The defocusing quintic NLS in four space dimensions

被引:18
作者
Dodson, Benjamin [1 ]
Miao, Changxing [2 ]
Murphy, Jason [3 ]
Zheng, Jiqiang [4 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] Univ Nice Sophia Antipolis, F-06108 Nice 02, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2017年 / 34卷 / 03期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Nonlinear Schrodinger equation; Concentration compactness; Scattering; Interaction Morawetz inequality; NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; ENERGY-SUPERCRITICAL NLS; RADIAL DATA; CRITICAL H; BLOW-UP; SCATTERING; MASS;
D O I
10.1016/j.anihpc.2016.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the defocusing quintic nonlinear Schrodinger equation in four space dimensions. We prove that any solution that remains bounded in the critical Sobolev space must be global and scatter. We employ a space-localized interaction Morawetz inequality, the proof of which requires us to overcome the logarithmic failure in the double Duhamel argument in four dimensions. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:759 / 787
页数:29
相关论文
共 42 条
[1]   Mass concentration phenomena for the L2-critical nonlinear Schrodinger equation [J].
Begout, Pascal ;
Vargas, Ana .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) :5257-5282
[2]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[3]   On the role of quadratic oscillations in nonlinear Schrodinger equations II.: The L2-critical case [J].
Carles, Remi ;
Keraani, Sahbi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) :33-62
[4]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[5]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10, DOI DOI 10.1090/CLN/010
[6]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[7]   Global existence and scattering for rough solutions of a nonlinear Schrodinger equation on R3 [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (08) :987-1014
[8]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[9]  
Dodson B., ARXIV14091950V1
[10]   GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE DEFOCUSING, L2-CRITICAL, NONLINEAR SCHRODINGER EQUATION WHEN d=1 [J].
Dodson, Benjamin .
AMERICAN JOURNAL OF MATHEMATICS, 2016, 138 (02) :531-569