Homogenization of Hamilton-Jacobi equations in Carnot Groups

被引:14
作者
Stroffolini, Bianca [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
关键词
homogenization; Carnot Groups; Hamilton-Jacobi;
D O I
10.1051/cocv:2007005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study an homogenization problem for Hamilton-Jacobi equations in the geometry of Carnot Groups. The tiling and the corresponding notion of periodicity are compatible with the dilatations of the Group and use the Lie bracket generating property.
引用
收藏
页码:107 / 119
页数:13
相关论文
共 12 条
[1]   Viscosity solutions methods for singular perturbations in deterministic and stochastic control [J].
Alvarez, O ;
Bardi, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (04) :1159-1188
[2]  
[Anonymous], ADV MATH SCI APPL
[3]   Homogenization of Hamilton-Jacobi equations in the Heisenberg group [J].
Birindelli, I ;
Wigniolle, J .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2003, 2 (04) :461-479
[4]  
Capuzzo-Dolcetta I, 2001, INDIANA U MATH J, V50, P1113
[7]   PERRON METHOD FOR HAMILTON-JACOBI EQUATIONS [J].
ISHII, H .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) :369-384
[8]   Convex functions on the Heisenberg group [J].
Lu, GZ ;
Manfredi, JJ ;
Stroffolini, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 19 (01) :1-22
[9]   A version of the Hopf-Lax formula in the Heisenberg group [J].
Manfredi, JJ ;
Stroffolini, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (5-6) :1139-1159
[10]   Surface measures in Carnot-Caratheodory spaces [J].
Monti, R ;
Cassano, FS .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (03) :339-376