A segmentation method for images compressed by fuzzy transforms

被引:46
作者
Di Martino, Ferdinando [1 ,2 ]
Loia, Vincenzo [2 ]
Sessa, Salvatore [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Costruz & Metodi Matemat Architettur, I-80134 Naples, Italy
[2] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Salerno, Italy
关键词
FGFCM; PCAES; Fuzzy relation; Similarity measure; Fuzzy transform; Image segmentation; Lukasiewicz t-norm; PSNR; CLUSTER-VALIDITY; ALGORITHMS;
D O I
10.1016/j.fss.2009.08.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we describe a segmentation method applied to images which are compressed by using Fuzzy Transforms. The segmentation of the images is realized via the FGFCM (Fast Generalized Fuzzy C-Means) clustering algorithm, which is robust to noise and outliers. The optimal number of clusters is determined via the PCAES (Partition Coefficient And Exponential Separation) validity index. We use a similarity measure defined via Lukasiewicz t-norm for comparison between the original image and the reconstructed images. The best results are obtained if this similarity measure overcomes a threshold value, experimentally determined from the analysis of the trend of it with respect to the PSNR (Peak Signal to Noise Ratio). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 74
页数:19
相关论文
共 51 条
[1]   A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J].
Ahmed, MN ;
Yamany, SM ;
Mohamed, N ;
Farag, AA ;
Moriarty, T .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) :193-199
[2]  
[Anonymous], P JOINT ISPRS EARSEL
[3]   Design and implementation of web-based systems for image segmentation and CBIR [J].
Antonelli, Marco ;
Dellepiane, Silvana G. ;
Goccia, Marcello .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2006, 55 (06) :1869-1877
[4]  
Bezdek J., 1999, FUZZY MODELS ALGORIT
[5]  
Bezdek J. C., 1973, Journal of Cybernetics, V3, P58, DOI 10.1080/01969727308546047
[6]   NUMERICAL TAXONOMY WITH FUZZY SETS [J].
BEZDEK, JC .
JOURNAL OF MATHEMATICAL BIOLOGY, 1974, 1 (01) :57-71
[7]   REVIEW OF MR IMAGE SEGMENTATION TECHNIQUES USING PATTERN-RECOGNITION [J].
BEZDEK, JC ;
HALL, LO ;
CLARKE, LP .
MEDICAL PHYSICS, 1993, 20 (04) :1033-1048
[8]   Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J].
Cai, Weiling ;
Chen, Songean ;
Zhang, Daoqiang .
PATTERN RECOGNITION, 2007, 40 (03) :825-838
[9]   Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J].
Chen, SC ;
Zhang, DQ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04) :1907-1916
[10]   Fuzzy transform as an additive normal form [J].
Danková, M ;
Stepnicka, M .
FUZZY SETS AND SYSTEMS, 2006, 157 (08) :1024-1035