X, Y, and Z waves:: Extended structures in nonlinear lattices

被引:13
作者
Kevrekidis, P. G. [1 ]
Gagnon, J.
Frantzeskakis, D. J.
Malomed, B. A.
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Univ Athens, Dept Phys, GR-15784 Athens, Greece
[3] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 01期
关键词
D O I
10.1103/PhysRevE.75.016607
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a new type of waveforms in two-dimensional (2D) and three-dimensional (3D) discrete media-multilegged extended nonlinear structures (ENSs), built as arrays of lattice solitons (tiles and stones, in the 2D and 3D cases, respectively). We study the stability of the tiles and stones analytically, and then extend them numerically to complete ENS forms for both 2D and 3D lattices, aiming to single out stable ENSs. The predicted patterns can be realized in Bose-Einstein condensates trapped in deep optical lattices, crystals built of microresonators, and 2D photonic crystals. In the latter case, the patterns provide for a technique for writing reconfigurable virtual partitions in multipurpose photonic devices.
引用
收藏
页数:6
相关论文
共 37 条
[1]   Three-dimensional matter-wave vortices in optical lattices [J].
Alexander, TJ ;
Ostrovskaya, EA ;
Sukhorukov, AA ;
Kivshar, YS .
PHYSICAL REVIEW A, 2005, 72 (04)
[2]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[3]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[4]   Theory of nonlinear matter waves in optical lattices [J].
Brazhnyi, VA ;
Konotop, VV .
MODERN PHYSICS LETTERS B, 2004, 18 (14) :627-651
[5]   Localizing energy through nonlinearity and discreteness [J].
Campbell, DK ;
Flach, S ;
Kivshar, YS .
PHYSICS TODAY, 2004, 57 (01) :43-49
[6]   Three-dimensional nonlinear lattices:: From oblique vortices and octupoles to discrete diamonds and vortex cubes -: art. no. 203901 [J].
Carretero-González, R ;
Kevrekidis, PG ;
Malomed, BA ;
Frantzeskakis, DJ .
PHYSICAL REVIEW LETTERS, 2005, 94 (20)
[7]   Depositing light in a photonic stop gap by use of Kerr nonlinear microresonators [J].
Chak, P ;
Sipe, JE ;
Pereira, S .
OPTICS LETTERS, 2003, 28 (20) :1966-1968
[8]   Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains [J].
Chen, ZG ;
Martin, H ;
Eugenieva, ED ;
Xu, JJ ;
Bezryadina, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (14) :143902-1
[9]   Bessel X waves in two- and three-dimensional bidispersive optical systems [J].
Christodoulides, DN ;
Efremidis, NK ;
Di Trapani, P ;
Malomed, BA .
OPTICS LETTERS, 2004, 29 (13) :1446-1448
[10]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823