A Comparison of Deep Learning Architectures for Optical Galaxy Morphology Classification

被引:4
作者
Fielding, Ezra [1 ]
Nyirenda, Clement N. [1 ]
Vaccari, Mattia [2 ]
机构
[1] Univ Western Cape, Dept Comp Sci, Cape Town, South Africa
[2] Univ Western Cape, Dept Phys & Astron, Cape Town, South Africa
来源
INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021) | 2021年
关键词
Deep Learning; Optical Galaxy Morphology; Classification; Astronomy; ZOO; COMPACT; SKY;
D O I
10.1109/ICECET52533.2021.9698414
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The classification of galaxy morphology plays a crucial role in understanding galaxy formation and evolution. Traditionally, this process is done manually. The emergence of deep learning techniques has given room for the automation of this process. As such, this paper offers a comparison of deep learning architectures to determine which is best suited for optical galaxy morphology classification. Adapting the model training method proposed by Walmsley et al in 2021, the Zoobot Python library is used to train models to predict Galaxy Zoo DECaLS decision tree responses, made by volunteers, using EfficientNet B0, DenseNet121 and ResNet50 as core model architectures. The predicted results are then used to generate accuracy metrics per decision tree question to determine architecture performance. DenseNet121 was found to produce the best results, in terms of accuracy, with a reasonable training time. In future, further testing with more deep learning architectures could prove beneficial.
引用
收藏
页码:1360 / 1364
页数:5
相关论文
共 28 条
[1]   The FIRST Classifier: compact and extended radio galaxy classification using deep Convolutional Neural Networks [J].
Alhassan, Wathela ;
Taylor, A. R. ;
Vaccari, Mattia .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 480 (02) :2085-2093
[2]   Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection [J].
Banfield, J. K. ;
Wong, O. I. ;
Willett, K. W. ;
Norris, R. P. ;
Rudnick, L. ;
Shabala, S. S. ;
Simmons, B. D. ;
Snyder, C. ;
Garon, A. ;
Seymour, N. ;
Middelberg, E. ;
Andernach, H. ;
Lintott, C. J. ;
Jacob, K. ;
Kapinska, A. D. ;
Mao, M. Y. ;
Masters, K. L. ;
Jarvis, M. J. ;
Schawinski, K. ;
Paget, E. ;
Simpson, R. ;
Kloeckner, H. -R. ;
Bamford, S. ;
Burchell, T. ;
Chow, K. E. ;
Cotter, G. ;
Fortson, L. ;
Heywood, I. ;
Jones, T. W. ;
Kaviraj, S. ;
Lopez-Sanchez, A. R. ;
Maksym, W. P. ;
Polsterer, K. ;
Borden, K. ;
Hollow, R. P. ;
Whyte, L. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (03) :2326-2340
[3]   CNN architecture comparison for radio galaxy classification [J].
Becker, Burger ;
Vaccari, Mattia ;
Prescott, Matthew ;
Grobler, Trienko .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (02) :1828-1846
[4]   Deblending and classifying astronomical sources with Mask R-CNN deep learning [J].
Burke, Colin J. ;
Aleo, Patrick D. ;
Chen, Yu-Ching ;
Liu, Xin ;
Peterson, John R. ;
Sembroski, Glenn H. ;
Lin, Joshua Yao-Yu .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (03) :3952-3965
[5]   The Square Kilometre Array [J].
Dewdney, Peter E. ;
Hall, Peter J. ;
Schilizzi, Richard T. ;
Lazio, T. Joseph L. W. .
PROCEEDINGS OF THE IEEE, 2009, 97 (08) :1482-1496
[6]   Rotation-invariant convolutional neural networks for galaxy morphology prediction [J].
Dieleman, Sander ;
Willett, Kyle W. ;
Dambre, Joni .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (02) :1441-1459
[7]   Automated fruit recognition using EfficientNet and MixNet [J].
Duong, Linh T. ;
Nguyen, Phuong T. ;
Di Sipio, Claudio ;
Di Ruscio, Davide .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 171
[8]   Surveying the reach and maturity of machine learning and artificial intelligence in astronomy [J].
Fluke, Christopher J. ;
Jacobs, Colin .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (02)
[9]   Cataloguing the radio-sky with unsupervised machine learning: a new approach for the SKA era [J].
Galvin, T. J. ;
Huynh, M. T. ;
Norris, R. P. ;
Wang, X. R. ;
Hopkins, E. ;
Polsterer, K. ;
Ralph, N. O. ;
O'Brien, A. N. ;
Heald, G. H. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (03) :2730-2758
[10]  
Gouda Niharika, 2020, 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), P536, DOI 10.1109/ICCCA49541.2020.9250855