Double scaling limit in random matrix models and a nonlinear hierarchy of differential equations

被引:22
作者
Bleher, P
Eynard, B
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Serv Phys Theor Saclay, F-91191 Gif Sur Yvette, France
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 12期
基金
美国国家科学基金会;
关键词
D O I
10.1088/0305-4470/36/12/314
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the critical behaviour of a random Hermitian one-matrix model with nonsymmetric interaction at a critical point, in which the eigenvalue density function has a zero of degree 2m, m greater than or equal to, 1, inside a cut. We prove that in the generic case, m = 1, the model exhibits a third-order phase transition in temperature. We formulate an ansatz for the double scaling limit of recurrence coefficients, which is consistent with the quasiperiodic asymptotics of recurrence coefficients in the low temperature region, and from this ansatz we derive the Painleve II hierarchy of ordinary differential equations for the recurrence coefficients. In addition, we derive an integral kernel which governs the double scaling limit of correlation functions.
引用
收藏
页码:3085 / 3105
页数:21
相关论文
共 35 条
[1]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[2]  
Bessis D., 1980, Adv. Appl. Math., V1, P109, DOI 10.1016/0196-8858(80)90008-1
[3]   Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model [J].
Bleher, P ;
Its, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :185-266
[4]  
BLEHER P, 2002, MATHPH0201003
[5]   Breakdown of universality in multi-cut matrix models [J].
Bonnet, G ;
David, F ;
Eynard, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (38) :6739-6768
[6]   UNIVERSALITY OF THE CORRELATIONS BETWEEN EIGENVALUES OF LARGE RANDOM MATRICES [J].
BREZIN, E ;
ZEE, A .
NUCLEAR PHYSICS B, 1993, 402 (03) :613-627
[7]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[8]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[9]   SYMMETRY-BREAKING IN THE DOUBLE-WELL HERMITIAN MATRIX MODELS [J].
BROWER, RC ;
DEO, N ;
JAIN, S ;
TAN, CI .
NUCLEAR PHYSICS B, 1993, 405 (01) :166-187
[10]   Thermodynamic relations of the Hermitian matrix ensembles [J].
Chen, Y ;
Ismail, MEH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (19) :6633-6654