Engineering Materials at the Nanoscale for Triboelectric Nanogenerators

被引:206
|
作者
Zhou, Yihao [1 ]
Deng, Weili [1 ]
Xu, Jing [1 ]
Chen, Jun [1 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
来源
CELL REPORTS PHYSICAL SCIENCE | 2020年 / 1卷 / 08期
关键词
ENERGY-CONVERSION EFFICIENCY; SURFACE-CHARGE DENSITY; OUTPUT PERFORMANCE; FRICTION LAYER; FLUOROCARBON PLASMA; CONTACT ELECTRIFICATION; BIOMECHANICAL ENERGY; DIELECTRIC-CONSTANT; HIGHLY TRANSPARENT; WRINKLE STRUCTURE;
D O I
10.1016/j.xcrp.2020.100142
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Taking advantage of the coupling effect of contact electrification and electrostatic induction, triboelectric nanogenerators can effectively convert various forms of ambient mechanical energy into electricity, and therefore have attracted much attention, with broad applications in energy harvesting, active sensing, and biomedical therapy, which are anticipated to be an indispensable component in the era of the Internet of things. To improve the mechanical-to-electrical conversion, various strategies have been reported to engineer the materials used at the nanoscale with physical, chemical, biological, and hybrid approaches. These strategies to enhance the output performance and extend the applications of triboelectric nanogenerators are comprehensively reviewed and summarized in this article. Furthermore, perspectives are also discussed in depth, with an emphasis on future research directions to further advance developments within the field.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Toward High-Performance Triboelectric Nanogenerators by Engineering Interfaces at the Nanoscale: Looking into the Future Research Roadmap
    Ahmed, Abdelsalam
    Hassan, Islam
    Pourrahimi, Amir Masoud
    Helal, Ahmed S.
    El-Kady, Maher F.
    Khassaf, Hamidreza
    Kaner, Richard B.
    ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (11)
  • [2] Polymer-based triboelectric nanogenerators: Materials, characterization, and applications
    Shanbedi, Mina
    Ardebili, Haleh
    Karim, Alamgir
    PROGRESS IN POLYMER SCIENCE, 2023, 144
  • [3] A Comprehensive Review on the Novel Principles, Development and Applications of Triboelectric Nanogenerators
    Hurdoganoglu, Dogus
    Safaei, Babak
    Cheng, Jia
    Qin, Zhaoye
    Sahmani, Saeid
    APPLIED MECHANICS REVIEWS, 2024, 76 (01)
  • [4] Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends
    Dzhardimalieva, Gulzhian, I
    Yadav, Bal C.
    Lifintseva, Tat'yana, V
    Uflyand, Igor E.
    EUROPEAN POLYMER JOURNAL, 2021, 142
  • [5] STUDY ON THE INFLUENCE OF FERROELECTRIC MATERIALS ON THE OUTPUT PERFORMANCE OF TRIBOELECTRIC NANOGENERATORS
    Chen, Xin
    Gao, Lingxiao
    Chen, Junfei
    Qi, Mengke
    Li, Dongxiao
    Zeng, Shaokun
    Mu, Xiaojing
    2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019, : 342 - 345
  • [6] Triboelectric Nanogenerators for Mechanical Energy Harvesting
    Kaur, Navjot
    Pal, Kaushik
    ENERGY TECHNOLOGY, 2018, 6 (06) : 958 - 997
  • [7] Dielectric materials for high-performance triboelectric nanogenerators
    Deng Hao-Cheng
    Li Yi
    Tian Shuang-Shuang
    Zhang Xiao-Xing
    Xiao Song
    ACTA PHYSICA SINICA, 2024, 73 (07)
  • [8] Environmentally friendly natural materials for triboelectric nanogenerators: a review
    Liu, Songling
    Tong, Wangshu
    Gao, Caixia
    Liu, Yulun
    Li, Xinnan
    Zhang, Yihe
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (17) : 9270 - 9299
  • [9] Facile and robust triboelectric nanogenerators assembled using off-the-shelf materials
    Mallineni, Sai Sunil Kumar
    Behlow, Herbert
    Dong, Yongchang
    Bhattacharya, Sriparna
    Rao, Apparao M.
    Podila, Ramakrishna
    NANO ENERGY, 2017, 35 : 263 - 270
  • [10] Design and synthesis of triboelectric polymers for high performance triboelectric nanogenerators
    Tao, Xinglin
    Chen, Xiangyu
    Wang, Zhong Lin
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (09) : 3654 - 3678