Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition

被引:117
作者
Li, Jinfeng [1 ]
Xiang, Shuo [2 ]
Luan, Hengwei [3 ]
Amar, Abdukadir [2 ]
Liu, Xue [1 ]
Lu, Siyuan [4 ]
Zeng, Yangyang [5 ]
Le, Guomin [1 ]
Wang, Xiaoying [1 ]
Qu, Fengsheng [1 ]
Jiang, Chunli [1 ]
Yang, Guannan [6 ]
机构
[1] China Acad Engn Phys, Inst Mat, Mianyang 621907, Sichuan, Peoples R China
[2] Xinjiang Univ, Coll Phys & Technol, Urumqi 830046, Xinjiang, Peoples R China
[3] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[4] Ningbo Univ, Sch Mech Engn & Mech, Ningbo 315211, Zhejiang, Peoples R China
[5] China Acad Engn Phys, Inst Fluid Phys, Natl Key Lab Shock Wave & Detonat Phys, Mianyang 621907, Sichuan, Peoples R China
[6] Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Guangdong, Peoples R China
关键词
High-entropy alloys; Laser metal deposition; Precipitates; Microstructures; Tensile test; TENSILE PROPERTIES; MICROSTRUCTURES; DEPOSITION; PARTICLES;
D O I
10.1016/j.jmst.2019.05.062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser melting deposition with WC addition has been developed to fabricate high-strength CrMnFeCoNi-based high-entropy alloys-based composites. By this technique, a microstructure of compact refined equiaxed grains can be achieved, and the tensile strength can be remarkably improved. The sample with 5 wt% WC addition shows a promising mechanical performance with a tensile strength of 800 MPa and an elongation of 37%. The improvement in mechanical property may be attributed to the formation of Cr23C6 reinforcement precipitates, which could promote the heterogeneous nucleation of grains and hinder the propagation of slip bands. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:2430 / 2434
页数:5
相关论文
共 25 条
[1]   The use of high-entropy alloys in additive manufacturing [J].
Brif, Yevgeni ;
Thomas, Meurig ;
Todd, Iain .
SCRIPTA MATERIALIA, 2015, 99 :93-96
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]   Metal Matrix Composites Reinforced by Nano-Particles-A Review [J].
Casati, Riccardo ;
Vedani, Maurizio .
METALS, 2014, 4 (01) :65-83
[4]   The influence of the enthalpy of mixing during the laser deposition of complex titanium alloys using elemental blends [J].
Collins, PC ;
Banerjee, R ;
Fraser, HL .
SCRIPTA MATERIALIA, 2003, 48 (10) :1445-1450
[5]   The effect of second-phase particles on grain refinement during equal-channel angular pressing in an Al-Cu-Mg-Ag alloy [J].
Gazizov, M. ;
Malopheyev, S. ;
Kaibyshev, R. .
JOURNAL OF MATERIALS SCIENCE, 2015, 50 (02) :990-1005
[6]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[7]   Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J].
He, J. Y. ;
Liu, W. H. ;
Wang, H. ;
Wu, Y. ;
Liu, X. J. ;
Nieh, T. G. ;
Lu, Z. P. .
ACTA MATERIALIA, 2014, 62 :105-113
[8]   Manufacturing of High Entropy Alloys [J].
Jablonski, Paul D. ;
Licavoli, Joseph J. ;
Gao, Michael C. ;
Hawk, Jeffrey A. .
JOM, 2015, 67 (10) :2278-2287
[9]   Effect of Niobium on Microstructure and Properties of the CoCrFeNbxNi High Entropy Alloys [J].
Jiang, Hui ;
Jiang, Li ;
Qiao, Dongxu ;
Lu, Yiping ;
Wang, Tongmin ;
Cao, Zhiqiang ;
Li, Tingju .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2017, 33 (07) :712-717
[10]   Three types of Portevin-Le Chatelier effects: Experiment and modelling [J].
Jiang, Huifeng ;
Zhang, Qingchuan ;
Chen, Xuedong ;
Chen, Zhongjia ;
Jiang, Zhenyu ;
Wu, Xiaoping ;
Fan, Jinghong .
ACTA MATERIALIA, 2007, 55 (07) :2219-2228