Intermittency route to strange nonchaotic attractors in a non-skew-product map

被引:5
作者
Mitsui, Takahito [1 ]
Aizawa, Yoji [1 ]
机构
[1] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
FRACTALIZATION; TRANSITIONS; MECHANISM; BIRTH;
D O I
10.1103/PhysRevE.81.046210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Whether strange nonchaotic attractors (SNAs) can typically arise in non-skew-product maps has been a crucial question for more than two decades. Recently, it was shown that SNAs arise in a particular non-skew-product map related to quasiperiodically driven continuous dynamical systems [R. Badard, Chaos, Solitons Fractals 28, 1327 (2006); Chaos 18, 023127 (2008)]. In the present paper, we derive Badard's non-skew-product map from a periodically driven continuous dynamical system with spatially quasiperiodic potential and investigate onset mechanisms of SNAs in the map. In particular, we focus on a transition route to intermittent SNAs, where SNAs appear after pair annihilations of stable and unstable fixed points located on a ring-shaped invariant curve. Then the mean residence time and rotation numbers have a logarithmic singularity. Finally, we discuss the existence of SNAs in a special class of non-skew-product maps.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Strange nonchaotic attractors in autonomous and periodically driven systems [J].
Anishchenko, VS ;
Vadivasova, TE ;
Sosnovtseva, O .
PHYSICAL REVIEW E, 1996, 54 (04) :3231-3234
[2]   Reply to "Comment on 'Strange nonchaotic attractors in autonomous and periodically driven systems'" [J].
Anishchenko, VS ;
Vadivasova, TE ;
Sosnovtseva, O .
PHYSICAL REVIEW E, 1997, 56 (06) :7322-7322
[3]  
[Anonymous], 1992, PHYS REV A
[4]   Unwrapping trajectories of a quasi-periodic forced oscillator can give maps of the real line with SNA [J].
Badard, R .
CHAOS SOLITONS & FRACTALS, 2006, 28 (05) :1327-1336
[5]   A lot of strange attractors: Chaotic or not? [J].
Badard, R. .
CHAOS, 2008, 18 (02)
[6]   QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE [J].
BONDESON, A ;
OTT, E ;
ANTONSEN, TM .
PHYSICAL REVIEW LETTERS, 1985, 55 (20) :2103-2106
[7]   Thermodynamics of critical strange nonchaotic attractors [J].
Datta, S ;
Sharma, A ;
Ramaswamy, R .
PHYSICAL REVIEW E, 2003, 68 (03) :361041-361046
[8]   EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW A, 1989, 39 (05) :2593-2598
[9]   Observation of a strange nonchaotic attractor in a neon glow discharge [J].
Ding, WX ;
Deutsch, H ;
Dinklage, A ;
Wilke, C .
PHYSICAL REVIEW E, 1997, 55 (03) :3769-3772
[10]   EXPERIMENTAL-OBSERVATION OF A STRANGE NONCHAOTIC ATTRACTOR [J].
DITTO, WL ;
SPANO, ML ;
SAVAGE, HT ;
RAUSEO, SN ;
HEAGY, J ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1990, 65 (05) :533-536