Variational Bayesian probabilistic modeling framework for data-driven distributed process monitoring

被引:19
作者
Jiang, Jiashi [1 ]
Jiang, Qingchao [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational Bayesian inference; Distributed process monitoring; Fault detection; Latent variable model; Probabilistic modeling; DATA ANALYTICS; PLS;
D O I
10.1016/j.conengprac.2021.104778
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven process monitoring has gained increasing attention because of the increasing demand in process safety and the rapid advancement of data gathering techniques. When monitoring a plant-wide multiunit process, establishing a monitor for each unit individually ignores the correlations among units, whereas establishing a global monitor for the entire process ignores the local process behavior. A variational Bayesian-based probabilistic modeling approach is proposed for efficient distributed process monitoring. A novel probabilistic latent variable model is developed to characterize the variable relationship in each local unit and among units. First, variational Bayesian-based latent variable extraction is performed in each local unit, through which variable relationship within a local unit is characterized. Second, variational Bayesian-based regression model is established between the latent variables and neighboring variables, through which the variable relationship among units is characterized. Then, modeling residuals and monitoring statistics are generated, through which the process status and the type of a detected fault are identified. The effectiveness of the proposed probabilistic modeling and monitoring method is verified by three case studies, including a numerical example, the Tennessee Eastman benchmark process, and a laboratory distillation process.
引用
收藏
页数:14
相关论文
共 43 条
  • [1] [Anonymous], 2013, ARXIV13105438
  • [2] Bishop C.M., 2006, Pattern Recognition and Machine Learning
  • [3] Robust Bayesian networks for low-quality data modeling and process monitoring applications
    Chen, Guangjie
    Ge, Zhiqiang
    [J]. CONTROL ENGINEERING PRACTICE, 2020, 97
  • [4] Canonical correlation analysis-based fault detection methods with application to alumina evaporation process
    Chen, Zhiwen
    Ding, Steven X.
    Zhang, Kai
    Li, Zhebin
    Hu, Zhikun
    [J]. CONTROL ENGINEERING PRACTICE, 2016, 46 : 51 - 58
  • [5] Subspace method aided data-driven design of fault detection and isolation systems
    Ding, S. X.
    Zhang, P.
    Naik, A.
    Ding, E. L.
    Huang, B.
    [J]. JOURNAL OF PROCESS CONTROL, 2009, 19 (09) : 1496 - 1510
  • [6] A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM
    DOWNS, JJ
    VOGEL, EF
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) : 245 - 255
  • [7] Gao Z., 2015, IEEE T IND ELECTRON, V62, P3768, DOI DOI 10.1109/TIE.2015.2419013
  • [8] Process Data Analytics via Probabilistic Latent Variable Models: A Tutorial Review
    Ge, Zhiqiang
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (38) : 12646 - 12661
  • [9] Review on data-driven modeling and monitoring for plant-wide industrial processes
    Ge, Zhiqiang
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 171 : 16 - 25
  • [10] Data Mining and Analytics in the Process Industry: The Role of Machine Learning
    Ge, Zhiqiang
    Song, Zhihuan
    Deng, Steven X.
    Huang, Biao
    [J]. IEEE ACCESS, 2017, 5 : 20590 - 20616