A multi-objective evolutionary approach for phylogenetic inference

被引:0
作者
Cancino, Waldo [1 ]
Delbem, Alexandre C. B. [1 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13560970 Sao Carlos, SP, Brazil
来源
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS | 2007年 / 4403卷
基金
巴西圣保罗研究基金会;
关键词
phylogenetic inference; multi-objective optimization; genetic algorithms;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The phylogeny reconstruction problem consists of determining the most accurate tree that represents evolutionary relationships among species. Different criteria have been employed to evaluate possible solutions in order to guide a search algorithm towards the best tree. However, these criteria. may lead to distinct phylogenies, which are often conflicting among them. In this context, a multi-objective approach can be useful since it could produce a spectrum of equally optimal trees (Pareto front) according to all criteria. We propose a multi-objective evolutionary algorithm, named PhyloMOEA, which employs the maximum parsimony and likelihood criteria to evaluate solutions. PhyloMOEA was tested using four datasets of nucleotide sequences. This algorithm found, for all datasets, a Pareto front representing a trade-off between the criteria. Moreover, SH-test showed that most of solutions have scores similar to those obtained by phylogenetic programs using one criterion.
引用
收藏
页码:428 / +
页数:4
相关论文
共 50 条
  • [41] A Multi-Objective Evolutionary Algorithm based on Parallel Coordinates
    Hernandez Gomez, Raquel
    Coello Coello, Carlos A.
    Alba Torres, Enrique
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 565 - 572
  • [42] Multi-objective evolutionary search strategies in constraint programming
    Bennetto, Robert
    van Vuuren, Jan H.
    OPERATIONS RESEARCH PERSPECTIVES, 2021, 8
  • [43] Multi-objective Evolutionary Feature Selection
    Kundu, Partha Pratim
    Mitra, Sushmita
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 74 - 79
  • [44] Evolutionary Multi-objective Diversity Optimization
    Anh Viet Do
    Guo, Mingyu
    Neumann, Aneta
    Neumann, Frank
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024, 2024, 15151 : 117 - 134
  • [45] A novel multi-objective evolutionary algorithm
    Zheng, Bojin
    Hu, Ting
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 : 1029 - +
  • [46] Evolutionary Approaches for the Multi-objective Reservoir Operation Problem
    Rampazzo P.C.B.
    Yamakami A.
    de França F.O.
    J. Control Autom. Electr. Syst., 3 (297-306): : 297 - 306
  • [47] Evolutionary Multi-Objective Membrane Algorithm
    Liu, Chuang
    Du, Yingkui
    Li, Ao
    Lei, Jiahao
    IEEE ACCESS, 2020, 8 : 6020 - 6031
  • [48] A Multimodal Approach for Evolutionary Multi-objective Optimization (MEMO): Proof-of-Principle Results
    Tutum, Cem C.
    Deb, Kalyanmoy
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT I, 2015, 9018 : 3 - 18
  • [49] Synthesis of Difference Patterns for Monopulse Antenna Arrays - An Evolutionary Multi-objective Optimization Approach
    Pal, Siddharth
    Basak, Aniruddha
    Das, Swagatam
    Suganthan, P. N.
    SIMULATED EVOLUTION AND LEARNING, 2010, 6457 : 504 - +
  • [50] Genetic diversity as an objective in multi-objective evolutionary algorithms
    Toffolo, A
    Benini, E
    EVOLUTIONARY COMPUTATION, 2003, 11 (02) : 151 - 167