Easy-processing saccharin doped ZnO electron extraction layer in efficient polymer solar cells

被引:5
作者
Guo, Jian [1 ]
Dong, Jiale [1 ]
Wang, Zhongqiang [1 ]
Dong, Peng [1 ]
Wang, Xiaoliang [1 ]
Chen, Liuqing [1 ]
Zhou, Yingjuan [1 ]
Hao, Yuying [1 ]
Wang, Hua [1 ]
Xu, Bingshe [1 ]
机构
[1] Taiyuan Univ Technol, Res Ctr Adv Mat Sci & Technol, Key Lab Interface Sci & Engn Adv Mat, Minist Educ, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Electron extraction layer; ZnO; Polymer solar cells; High efficiency; Defects passivation; TRANSPORT LAYER; FULLERENE; PERFORMANCE; MORPHOLOGY; STABILITY;
D O I
10.1016/j.solener.2021.03.083
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of polymer solar cells is known to be critically dependent on the characters of the charge extraction layers. In this work, an efficient electron extraction layer (EEL) is developed by doping saccharin into precursor of ZnO. It shows that the introduction of saccharin helps to passivate defects in ZnO EEL and polish the interfacial contact, which lead to efficient charge transport and collection processes, suppressed charge recombination loss, and increased light photon utilization. In poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo [1,2-b;4,5-b ']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6diyl)]:[6,6]-phenyl C71-butyric acid methyl ester (PTB7-Th:PC71BM) based cells, over 10% enhancement of power conversion efficiency (PCE) is obtained compared to that of the reference cell with pristine ZnO as EEL. This work proves that the strategy of precursor additive has potential to prepare highly efficient EEL for polymer solar cells.
引用
收藏
页码:706 / 712
页数:7
相关论文
共 47 条
[1]   Role of Central Metal Ions in 8-Hydroxyquinoline-Doped ZnO Interfacial Layers for Improving the Performance of Polymer Solar Cells [J].
Babu, B. Hari ;
Lyu, Chengkun ;
Yu, Chengzhuo ;
Wen, Zhenchuan ;
Li, Fenghong ;
Hao, Xiao-Tao .
ADVANCED MATERIALS INTERFACES, 2018, 5 (22)
[2]   Polymer Solar Cells with 90% External Quantum Efficiency Featuring an Ideal Light- and Charge-Manipulation Layer [J].
Chen, Jing-De ;
Li, Yan-Qing ;
Zhu, Jingshuai ;
Zhang, Qianqian ;
Xu, Rui-Peng ;
Li, Chi ;
Zhang, Yue-Xing ;
Huang, Jing-Sheng ;
Zhan, Xiaowei ;
You, Wei ;
Tang, Jian-Xin .
ADVANCED MATERIALS, 2018, 30 (13)
[3]   Thermal-annealing-free inverted polymer solar cells using ZnO/Cs2CO3 bilayer as electron-selective layer [J].
Cheng, Gang ;
Tong, Wai-Yip ;
Low, Kam-Hung ;
Che, Chi-Ming .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 103 :164-170
[4]   Coating ZnO nanoparticle films with DNA nanolayers for enhancing the electron extracting properties and performance of polymer solar cells [J].
Dagar, Janardan ;
Scavia, Guido ;
Scarselli, Manuela ;
Destri, Silvia ;
De Crescenzi, Maurizio ;
Brown, Thomas M. .
NANOSCALE, 2017, 9 (48) :19031-19038
[5]   Solar Cells Incorporating Water/Alcohol-Soluble Electron-Extracting DNA Nanolayers [J].
Dagar, Janardan ;
Scarselli, Manuela ;
De Crescenzi, Maurizio ;
Brown, Thomas M. .
ACS ENERGY LETTERS, 2016, 1 (03) :510-515
[6]   Interface Modification Enabled by Atomic Layer Deposited Ultra-Thin Titanium Oxide for High-Efficiency and Semitransparent Organic Solar Cells [J].
Duan, Leiping ;
Sang, Borong ;
He, Mingrui ;
Zhang, Yu ;
Hossain, Md Anower ;
Rahaman, Md Habibur ;
Wei, Qingya ;
Zou, Yingping ;
Uddin, Ashraf ;
Hoex, Bram .
SOLAR RRL, 2020, 4 (12)
[7]   Understanding S-Shaped Current-Voltage Characteristics in Organic Solar Cells Containing a TiOx Inter layer with Impedance Spectroscopy and Equivalent Circuit Analysis [J].
Ecker, Bernhard ;
Egelhaaf, Hans-Joachim ;
Steim, Roland ;
Parisi, Juergen ;
von Hauff', Elizabeth .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (31) :16333-16337
[8]   Aminosilane as a Molecular Linker between the Electron-Transport Layer and Active Layer for Efficient Inverted Polymer Solar Cells [J].
Fu, Ping ;
Guo, Xin ;
Wang, Shengyang ;
Ye, Yun ;
Li, Can .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) :13390-13395
[9]   Strong addition effect of n-type polymer with mid-energy level in polymer: fullerene solar cells with power conversion efficiency exceeding 10% [J].
Han, Hyemi ;
Seo, Jooyeok ;
Song, Myeonghun ;
Kim, Hwajeong ;
Kim, Youngkyoo .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) :7480-7487
[10]   High-Efficiency and Stable Organic Solar Cells Enabled by Dual Cathode Buffer Layers [J].
Huai, Zhaoxiang ;
Wang, Lixin ;
Sun, Yansheng ;
Fan, Rui ;
Huang, Shahua ;
Zhao, Xiaohui ;
Li, Xiaowei ;
Fu, Guangsheng ;
Yang, Shaopeng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) :5682-5692