Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells

被引:133
|
作者
Lanzini, Andrea [1 ]
Leone, Pierluigi [1 ]
机构
[1] Politecn Torino, Dipartimento Energet, I-10129 Turin, Italy
关键词
Biogas; Direct internal-reforming; SOFC; Carbon deposition; Bio-hydrogen; Dark anaerobic digestion; ANAEROBIC CO-DIGESTION; WASTE-WATER; BIOHYDROGEN PRODUCTION; HYDROGEN-PRODUCTION; FOOD WASTE; METHANE PRODUCTION; ORGANIC FRACTION; SOFC; FERMENTATION; FEASIBILITY;
D O I
10.1016/j.ijhydene.2009.12.146
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work investigates the behaviour of planar solid oxide fuel cells (SOFCs) fed by two different fuel mixtures that simulate biogases coming from anaerobic digestion. The fuel mixtures are namely bio-methane and bio-hydrogen. The first composition is the conventional one, where a biological process of fermentation is carried out to produce a gas that contains a mixture of methane and carbon dioxide with traces of H(2)S and other organic sulphur compounds. The second mixture is representative of a biogas produced through a novel routine: a particular pre-treatment of the bacteria inoculum (generally clostridia bacteria) is performed in order to inhibit the methanogenic step in the fermentation process, such that bio-hydrogen is produced as the only effluent of the digester (a mixture of H(2)/CO(2), with no traces of methane). Both bio-methane and bio-hydrogen have been directly fed to SOFC planar cells; in particular, an anode supported cell (ASC) with nickel and 8 mol% yttrium-stabilised zirconia (Ni-YSZ), and an electrolyte supported cell (ESC) with a 3YSZ (3 mol% yttrium-stabilised zirconia) electrolyte and a thin Ni-GDC (Ni/Gd-doped ceria) anode have been tested. The bio-methane resulted in carbon deposition in both cells without the addition of any oxidant to promote methane conversion in H(2) and CO. The addition of addition of air, steam and CO(2) as oxidants was successfully tested to produce a direct internal reforming of methane onto the anode surface. For each selected bio-CH(4)/oxidant mixture, a stable behaviour of the cell voltage under load conditions of 0.5 A cm(-2) for the ASC and 0.3 A cm(-2) for the ESC were observed for at least 50 h at 800 degrees C. The oxidant addition was demonstrated to be effective in preventing carbon-deposition and converting the methane into H(2) and CO. The bio-hydrogen was tested and found not to need an oxidant. Degradation did not occur in a temperature range of 700-850 degrees C. This biogas was completely safe in terms of carbon-deposition at SOFC temperatures. An energy model of a complete SOFC system running on reformed bio-methane and on bio-hydrogen in its original composition has been developed. The results reveal that the best performances are obtained with the steam-reformed methane, where a DC electrical efficiency of over 41% is achieved. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2463 / 2476
页数:14
相关论文
共 50 条
  • [1] Advanced Direct Internal Reforming Concepts for Solid Oxide Fuel Cells Running with Biogas
    Tran, D. L.
    Kubota, A.
    Sakamoto, M.
    Tran, Q. T.
    Sasaki, K.
    Shiratori, Y.
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 2467 - 2476
  • [2] On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells
    Abdelkareem, Mohammad Ali
    Tanveer, Waqas Hassan
    Sayed, Enas Taha
    Assad, M. El Haj
    Allagui, Anis
    Cha, S. W.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 101 : 361 - 375
  • [3] Biogas fuel reforming for solid oxide fuel cells
    Murphy, Danielle M.
    Richards, Amy E.
    Colclasure, Andrew
    Rosensteel, Wade A.
    Sullivan, Neal P.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2012, 4 (02)
  • [4] Biogas Fuel Reforming for Solid Oxide Fuel Cells
    Murphy, Danielle M.
    Richards, Amy E.
    Colclasure, Andrew
    Rosensteel, Wade
    Sullivan, Neal P.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 2653 - 2667
  • [5] Experimental Investigations and Modeling of Direct Internal Reforming of Biogases in Tubular Solid Oxide Fuel Cells
    Lanzini, A.
    Leone, P.
    Pieroni, M.
    Santarelli, M.
    Beretta, D.
    Ginocchio, S.
    FUEL CELLS, 2011, 11 (05) : 697 - 710
  • [6] Performance simulation of direct internal reforming solid oxide fuel cells
    Zhao, Xi-Ling
    Zhang, Xing-Mei
    Duan, Chang-Gui
    Zou, Ping-Hua
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2009, 41 (02): : 97 - 100
  • [7] Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane
    Kim, Young Jin
    Lim, Hyung-Tae
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2015, 52 (05) : 325 - 330
  • [8] Internal reforming in solid oxide fuel cells
    Ormerod, RM
    REACTION KINETICS AND THE DEVELOPMENT OF CATALYTIC PROCESSES, 1999, 122 : 35 - 46
  • [9] TRANSIENT MODELING OF DIRECT INTERNAL REFORMING PLANAR SOLID OXIDE FUEL CELLS
    Colpan, C. Ozgur
    Dincer, Ibrahim
    Hamdullahpur, Feridun
    HT2008: PROCEEDING OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, VOL 3, 2009, : 605 - 612
  • [10] Implications for using biogas as a fuel source for solid oxide fuel cells: internal dry reforming in a small tubular solid oxide fuel cell
    Staniforth, J
    Ormerod, RM
    CATALYSIS LETTERS, 2002, 81 (1-2) : 19 - 23