On Quiver Grassmannians and Orbit Closures for Gen-Finite Modules

被引:0
作者
Pressland, Matthew [1 ]
Sauter, Julia [2 ]
机构
[1] Univ Stuttgart, Inst Algebra & Zahlentheorie, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Univ Bielefeld, Fak Math, Postfach 100 131, D-33501 Bielefeld, Germany
关键词
Quiver Grassmannian; Representation variety; Tilting theory; Desingularisation; UNISERIAL REPRESENTATIONS; DEGENERATIONS; VARIETIES; ALGEBRAS;
D O I
10.1007/s10468-021-10028-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that endomorphism rings of cogenerators in the module category of a finite-dimensional algebra A admit a canonical tilting module, whose tilted algebra B is related to A by a recollement. Let M be a gen-finite A-module, meaning there are only finitely many indecomposable modules generated by M. Using the canonical tilts of endomorphism algebras of suitable cogenerators associated to M, and the resulting recollements, we construct desingularisations of the orbit closure and quiver Grassmannians of M, thus generalising all results from previous work of Crawley-Boevey and the second author in 2017. We provide dual versions of the key results, in order to also treat cogen-finite modules.
引用
收藏
页码:413 / 445
页数:33
相关论文
共 45 条
[1]  
[Anonymous], 1994, K-Theory, V8, P395
[2]  
Assem I., 2006, ELEMENTS REPRESENTAT, V65
[3]  
AUSLANDER M, 1979, T AM MATH SOC, V250, P1
[4]   MODULES DETERMINED BY THEIR COMPOSITION FACTORS [J].
AUSLANDER, M ;
REITEN, I .
ILLINOIS JOURNAL OF MATHEMATICS, 1985, 29 (02) :280-301
[5]  
AUSLANDER M., 1974, COMMUN ALGEBRA, V1, P269
[6]   Normality of orbit closures for Dynkin quivers of type Αn [J].
Bobinski, G ;
Zwara, G .
MANUSCRIPTA MATHEMATICA, 2001, 105 (01) :103-109
[7]  
BONGARTZ K, 1995, ANN SCI ECOLE NORM S, V28, P647
[8]   Varieties of uniserial representations IV. Kinship to geometric quotients [J].
Bongartz, K ;
Huisgen-Zimmermann, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (05) :2091-2113
[9]  
Bongartz K, 1998, SOME GEOMETRIC ASPEC, VI, P1
[10]   On the quiver Grassmannian in the acyclic case [J].
Caldero, Philippe ;
Reineke, Markus .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (11) :2369-2380