Multirate generalized additive Runge Kutta methods

被引:43
作者
Guenther, Michael [1 ]
Sandu, Adrian [2 ]
机构
[1] Berg Univ Wuppertal, Inst Math Modelling Anal & Compuat Math IMACM, Gaussstr 20, D-42119 Wuppertal, Germany
[2] Virginia Polytech Inst & State Univ, Dept Comp Sci, Sci Computat Lab, 2202 Kraft Dr, Blacksburg, VA 24060 USA
基金
美国国家科学基金会;
关键词
STRONG STABILITY; EQUATIONS; SCHEMES;
D O I
10.1007/s00211-015-0756-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work constructs a new class of multirate schemes based on the recently developed generalized additive Runge-Kutta (GARK) methods (Sandu and Gunther, SIAM J Numer Anal, 53(1):17-42, 2015). Multirate schemes use different step sizes for different components and for different partitions of the right-hand side based on the local activity levels. We show that the new multirate GARK family includes many well-known multirate schemes as special cases. The order conditions theory follows directly from the GARK accuracy theory. Nonlinear stability and monotonicity investigations show that these properties are inherited from the base schemes provided that additional coupling conditions hold.
引用
收藏
页码:497 / 524
页数:28
相关论文
共 21 条
[1]  
Gunther M., 2013, CSLTR62013
[2]  
Gunther M., 2015, P SCEE2014 IN PRESS
[3]   Monotonicity for Runge-Kutta methods: Inner product norms [J].
Higueras, I .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 24 (01) :665-685
[4]   On strong stability preserving time discretization methods [J].
Higueras, I .
JOURNAL OF SCIENTIFIC COMPUTING, 2004, 21 (02) :193-223
[5]   Strong stability for additive Runge-Kutta methods [J].
Higueras, Inmaculada .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) :1735-1758
[6]  
Hundsdorfer W, 2013, NOTES NUMER FLUID ME, V120, P177
[7]   Additive Runge-Kutta schemes for convection-diffusion-reaction equations [J].
Kennedy, CA ;
Carpenter, MH .
APPLIED NUMERICAL MATHEMATICS, 2003, 44 (1-2) :139-181
[8]   Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows [J].
Knoth, O ;
Wolke, R .
APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) :327-341
[9]   CONTRACTIVITY OF RUNGE-KUTTA METHODS [J].
KRAAIJEVANGER, JFBM .
BIT, 1991, 31 (03) :482-528
[10]  
KVAERNO A, 1999, 991 IWRMM U KARLSR