The simple exclusion process on the circle has a diffusive cutoff window

被引:14
作者
Lacoin, Hubert [1 ]
机构
[1] IMPA, Via Dona Castorina 110, BR-22460320 Jardim Botanico, RJ, Brazil
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 03期
关键词
Markov chains; Mixing time; Particle systems; Cutoff Window; LOGARITHMIC SOBOLEV INEQUALITY; MARKOV-CHAINS; RANDOM-WALKS; MIXING TIME; ISING-MODEL; PROFILE;
D O I
10.1214/16-AIHP759
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the mixing time of the simple exclusion process on the circle with N sites, with a number of particle k(N) tending to infinity, both from the worst initial condition and from a typical initial condition. We show that the worst-case mixing time is asymptotically equivalent to (8 pi(2))(-1) N-2 log k, while the cutoff window is identified to be N-2. Starting from a typical condition, we show that there is no cutoff and that the mixing time is of order N-2.
引用
收藏
页码:1402 / 1437
页数:36
相关论文
共 33 条
[1]   SHUFFLING CARDS AND STOPPING-TIMES [J].
ALDOUS, D ;
DIACONIS, P .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (05) :333-348
[2]  
[Anonymous], SEMINARE PROBABILITI
[3]  
[Anonymous], 2009, American Mathematical Soc.
[4]  
Basu R., 2015, P 36 ANN ACM SIAM S
[5]   PROOF OF ALDOUS' SPECTRAL GAP CONJECTURE [J].
Caputo, Pietro ;
Liggett, Thomas M. ;
Richthammer, Thomas .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) :831-851
[6]   The cutoff phenomenon for ergodic Markov processes [J].
Chen, Guan-Yu ;
Saloff-Coste, Laurent .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :26-78
[7]   GENERATING A RANDOM PERMUTATION WITH RANDOM TRANSPOSITIONS [J].
DIACONIS, P ;
SHAHSHAHANI, M .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :159-179
[8]   TIME TO REACH STATIONARITY IN THE BERNOULLI LAPLACE DIFFUSION-MODEL [J].
DIACONIS, P ;
SHAHSHAHANI, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (01) :208-218
[9]  
Diaconis P, 1996, ANN APPL PROBAB, V6, P695
[10]  
DIACONIS P., 1993, The Annals of Applied Probability, V3, P696, DOI DOI 10.1214/AOAP/1177005359