Graph Convolutional Networks Skeleton-based Action Recognition for Continuous Data Stream: A Sliding Window Approach

被引:5
|
作者
Delamare, Mickael [1 ,2 ]
Laville, Cyril [1 ]
Cabani, Adnane [2 ]
Chafouk, Houcine [2 ]
机构
[1] SIAtech SAS, 73 Rue Martainville, F-76000 Rouen, France
[2] Normandie Univ, UNIROUEN, IRSEEM, ESIGELEC, F-76000 Rouen, France
来源
VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP | 2021年
关键词
Spatial-temporal Graph Convolutional Networks; Sliding Window; Action Recognition; Skeleton Data; GESTURE RECOGNITION;
D O I
10.5220/0010234904270435
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel deep learning-based approach to human action recognition. The method consists of a Spatio-Temporal Graph Convolutional Network operating in real-time thanks to a sliding window approach. The proposed architecture consists of a fixed window for training, validation, and test process with a Spatio-Temporal-Graph Convolutional Network for skeleton-based action recognition. We evaluate our architecture on two available datasets of common continuous stream action recognition, the Online Action Detection dataset, and UOW Online Action 3D datasets. This method is utilized for temporal detection and classification of the performed action recognition in real-time.
引用
收藏
页码:427 / 435
页数:9
相关论文
共 50 条
  • [1] Multi-stream slowFast graph convolutional networks for skeleton-based action recognition
    Sun, Ning
    Leng, Ling
    Liu, Jixin
    Han, Guang
    IMAGE AND VISION COMPUTING, 2021, 109
  • [2] Temporal segment graph convolutional networks for skeleton-based action recognition
    Ding, Chongyang
    Wen, Shan
    Ding, Wenwen
    Liu, Kai
    Belyaev, Evgeny
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 110
  • [3] Graph Edge Convolutional Neural Networks for Skeleton-Based Action Recognition
    Zhang, Xikun
    Xu, Chang
    Tian, Xinmei
    Tao, Dacheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (08) : 3047 - 3060
  • [4] Information Enhanced Graph Convolutional Networks for Skeleton-based Action Recognition
    Sun, Dengdi
    Zeng, Fanchen
    Luo, Bin
    Tang, Jin
    Ding, Zhuanlian
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [5] Shuffle Graph Convolutional Network for Skeleton-Based Action Recognition
    Yu, Qiwei
    Dai, Yaping
    Hirota, Kaoru
    Shao, Shuai
    Dai, Wei
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (05) : 790 - 800
  • [6] Dual-domain graph convolutional networks for skeleton-based action recognition
    Chen, Shuo
    Xu, Ke
    Mi, Zhongjie
    Jiang, Xinghao
    Sun, Tanfeng
    MACHINE LEARNING, 2022, 111 (07) : 2381 - 2406
  • [7] Pose-Guided Graph Convolutional Networks for Skeleton-Based Action Recognition
    Chen, Han
    Jiang, Yifan
    Ko, Hanseok
    IEEE ACCESS, 2022, 10 : 111725 - 111731
  • [8] Cross-Channel Graph Convolutional Networks for Skeleton-Based Action Recognition
    Xie, Jun
    Xin, Wentian
    Liu, Ruyi
    Sheng, Lijie
    Liu, Xiangzeng
    Gao, Xuesong
    Zhong, Sheng
    Tang, Lei
    Miao, Qiguang
    IEEE ACCESS, 2021, 9 (09): : 9055 - 9065
  • [9] SPATIOTEMPORAL-SPECTRAL GRAPH CONVOLUTIONAL NETWORKS FOR SKELETON-BASED ACTION RECOGNITION
    Chen, Shuo
    Xu, Ke
    Jiang, Xinghao
    Sun, Tanfeng
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [10] Skeleton-based action recognition by part-aware graph convolutional networks
    Yang Qin
    Lingfei Mo
    Chenyang Li
    Jiayi Luo
    The Visual Computer, 2020, 36 : 621 - 631