On minimal faithful permutation representations of finite groups

被引:11
作者
Kovács, LG
Praeger, CE
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
[2] Univ Western Australia, Perth, WA 6907, Australia
关键词
D O I
10.1017/S0004972700018797
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The minimal faithful permutation degree mu>(*) over bar * (G) of a finite group G is the least positive integer n such that G is isomorphic to a subgroup of the symmetric group S-n. Let N be a normal subgroup of a finite group G. We prove that mu>(*) over bar * (G/N) less than or equal to mu>(*) over bar * (G) if G/N has no nontrivial Abelian normal subgroup. There is an as yet unproved conjecture that the same conclusion holds if G/N is Abelian. We investigate the structure of a (hypothetical) minimal counterexample to this conjecture.
引用
收藏
页码:311 / 317
页数:7
相关论文
共 7 条
[1]  
[Anonymous], 1986, LONDON MATH SOC LECT, V121, P59
[2]   ON MINIMAL FAITHFUL PERMUTATION REPRESENTATIONS OF FINITE-GROUPS [J].
EASDOWN, D ;
PRAEGER, CE .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 38 (02) :207-220
[3]  
Fuchs L., 1958, ABELIAN GROUPS
[4]   MINIMAL PERMUTATION REPRESENTATIONS OF FINITE-GROUPS [J].
JOHNSON, DL .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (04) :857-&
[5]   FINITE PERMUTATION-GROUPS WITH LARGE ABELIAN QUOTIENTS [J].
KOVACS, LG ;
PRAEGER, CE .
PACIFIC JOURNAL OF MATHEMATICS, 1989, 136 (02) :283-292
[6]  
WALTON J, 1999, THESIS U WARWICK
[7]   DEGREES OF MINIMAL EMBEDDINGS FOR SOME DIRECT PRODUCTS [J].
WRIGHT, D .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :897-903