Multi-view classification with semi-supervised learning for SAR target recognition

被引:29
作者
Zhang, Yukun [1 ]
Guo, Xiansheng [1 ]
Ren, Haohao [1 ]
Li, Lin [1 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; Multiple views; Label propagation; Expectation maximization; Convolutional neural networks; Synthetic aperture radar; SPARSE REPRESENTATION; DECISION FUSION; IMAGES;
D O I
10.1016/j.sigpro.2021.108030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A large number of labeled samples are required for convolutional neural network (CNN) to train a deep network model with satisfactory generalization ability. However, it is fairly expensive to obtain sufficient labeled samples in most synthetic aperture radar (SAR) applications. To deal with the problem, in this paper, we propose a novel multi-view classification method with semi-supervised learning for SAR target recognition, which mainly contains a CNN model with the label propagation ability (CNN-LP) and a new expectation maximization (EM) based multi-view fusion strategy. In the training phase, an initial CNN model is trained with limited labeled samples, which is further used to assign pseudo labels for unlabeled samples by the label propagation. Then we can obtain a robust CNN-LP model by alternately updating the model and propagating labels. In the testing phase, the CNN-LP model is used to generate the classification probabilities. To further alleviate the sensitivity of the model towards large depression angle variations, we construct a multi-view label set (MLS) by selecting possible labels adaptively according to the predicted probabilities. Finally, a new EM-based strategy is designed to give the predicted labels. Unlike most of existing multi-view methods which have strict constraints on the angle interval among multiple views, the proposed strategy is free from the aspect interval limitation. Experiments conducted on different datasets all demonstrate the robustness and effectiveness of the proposed method for SAR target recognition. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Multi-Scale Rotation-Invariant Haar-Like Feature Integrated CNN-Based Ship Detection Algorithm of Multiple-Target Environment in SAR Imagery [J].
Ai, Jiaqiu ;
Tian, Ruitian ;
Luo, Qiwu ;
Jin, Jing ;
Tang, Bo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12) :10070-10087
[2]  
[Anonymous], 2014, Comput. Sci.
[3]  
[Anonymous], 2002, UNLABELED DATA CAN D
[4]   Automatic target recognition with joint sparse representation of heterogeneous multi-view SAR images over a locally adaptive dictionary [J].
Cao, Zongjie ;
Xu, Liyuan ;
Feng, Jilan .
SIGNAL PROCESSING, 2016, 126 :27-34
[5]   Bayesian semi-supervised learning with support vector machine [J].
Chakraborty, Sounak .
STATISTICAL METHODOLOGY, 2011, 8 (01) :68-82
[6]  
Chen SZ, 2014, 2014 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), P541, DOI 10.1109/DSAA.2014.7058124
[7]   Target Classification Using the Deep Convolutional Networks for SAR Images [J].
Chen, Sizhe ;
Wang, Haipeng ;
Xu, Feng ;
Jin, Ya-Qiu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4806-4817
[8]   Multiple Feature Aggregation Using Convolutional Neural Networks for SAR Image-Based Automatic Target Recognition [J].
Cho, Jun Hoo ;
Park, Chan Gook .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) :1882-1886
[9]   GROUND-HYPOTHESES FOR BETA-DISTRIBUTION AS BAYESIAN PRIOR [J].
COLOMBO, AG ;
COSTANTINI, D .
IEEE TRANSACTIONS ON RELIABILITY, 1980, 29 (01) :17-21
[10]   Target recognition in synthetic aperture radar images via non-negative matrix factorisation [J].
Cui, Zongyong ;
Cao, Zongjie ;
Yang, Jianyu ;
Feng, Jilan ;
Ren, Hongliang .
IET RADAR SONAR AND NAVIGATION, 2015, 9 (09) :1376-1385