Identification of Active Sites for CO2 Reduction on Graphene-Supported Single-Atom Catalysts

被引:7
|
作者
Kang, Youngho [1 ]
Kang, Sungwoo [2 ,3 ]
Han, Seungwu [2 ,3 ]
机构
[1] Incheon Natl Univ, Dept Mat Sci & Engn, Incheon 22012, South Korea
[2] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Adv Mat, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
CO2; reduction; density functional calculations; graphene; single-atom catalysts; zinc; ELECTROCHEMICAL REDUCTION; EFFICIENT; ELECTRODE;
D O I
10.1002/cssc.202100757
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal- and nitrogen-codoped graphene (referred to as M-N-G, where M is a transition metal) has emerged as an important type of single-atom catalysts with high selectivities and activities for electrochemical CO2 reduction (CO2R) to CO. However, despite extensive previous studies on the catalytic origin, the active site in M-N-G catalysts remains puzzling. In this study, density functional theory calculations and computational hydrogen electrode model is used to investigate CO2R reaction energies on Zn-N-G, which exhibits outstanding catalytic performance, and to examine kinetic barriers of reduction reactions by using the climbing image nudged elastic band method. We find that single Zn atoms binding to N and C atoms in divacancy sites of graphene cannot serve as active sites to enable CO production, owing to *OCHO formation (* denotes an adsorbate) at an initial protonation process. This contradicts the widely accepted CO2R mechanism whereby single metal atoms are considered catalytic sites. In contrast, the C atom that is the nearest neighbor of the single Zn atom (C-NN) is found to be highly active and the Zn atom plays a role as an enhancer of the catalytic activity of the C-NN. Detailed analysis of the CO2R pathway to CO on the C-NN site reveals that *COOH is favorably formed at an initial electrochemical step, and every reaction step becomes downhill in energy at small applied potentials of about -0.3 V with respect to reversible hydrogen electrode. Electronic structure analysis is also used to elucidate the origin of the CO2R activity of the C-NN site.
引用
收藏
页码:2475 / 2480
页数:6
相关论文
共 50 条
  • [31] Microenvironment Modulation in Carbon-Supported Single-Atom Catalysts for Efficient Electrocatalytic CO2 Reduction
    Song, Pengyu
    Zhu, Pan
    Su, Xiaoran
    Hou, Mengyun
    Zhao, Di
    Zhang, Jiatao
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (20)
  • [32] Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts
    Zhuo, Hong-Ying
    Yu, Xiaohu
    Yu, Qi
    Xiao, Hai
    Zhang, Xin
    Li, Jun
    SCIENCE CHINA-MATERIALS, 2020, 63 (09) : 1741 - 1749
  • [33] C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening
    Cui, Xudong
    An, Wei
    Liu, Xiaoyang
    Wang, Hao
    Men, Yong
    Wang, Jinguo
    NANOSCALE, 2018, 10 (32) : 15262 - 15272
  • [34] Recent advances on CO2 reduction reactions using single-atom catalysts
    Yan, Xianyao
    Duan, Chenyu
    Yu, Shuihua
    Dai, Bing
    Sun, Chaoying
    Chu, Huaqiang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 190
  • [35] Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry
    Wenyu Yuan
    Yiyuan Ma
    Heng Wu
    Laifei Cheng
    Journal of Energy Chemistry , 2022, (02) : 254 - 279
  • [36] Regulating the coordination environment of single-atom catalysts for electrocatalytic CO2 reduction
    Lu, Song
    Lou, Fengliu
    Zhao, Yafei
    Yu, Zhixin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 646 : 301 - 310
  • [37] Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry
    Yuan, Wenyu
    Ma, Yiyuan
    Wu, Heng
    Cheng, Laifei
    JOURNAL OF ENERGY CHEMISTRY, 2022, 65 : 254 - 279
  • [38] Role of Peripheral Coordination Boron in Electrocatalytic Nitrogen Reduction over N-Doped Graphene-Supported Single-Atom Catalysts
    Ma, Ruijie
    Weng, Xintong
    Lin, Linghui
    Zhao, Jia
    Wei, Fenfei
    Lin, Sen
    MOLECULES, 2023, 28 (12):
  • [39] Regulating Efficient and Selective Single-atom Catalysts for Electrocatalytic CO2 Reduction
    Wang, Shuo
    Feng, Shao-Yang
    Zhao, Cong-Cong
    Zhao, Ting-Ting
    Tian, Yu
    Yan, Li-Kai
    CHEMPHYSCHEM, 2023, 24 (19)
  • [40] Selective CO2 Reduction over γ-Graphyne Supported Single-Atom Catalysts: Crucial Role of Strain Regulation
    Liu, Tianyang
    Xu, Tianze
    Li, Tianchun
    Jing, Yu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (34) : 24133 - 24140