Toward highly robust reversal-tolerant anodes in polymer electrolyte membrane fuel cells

被引:2
作者
Lee, Dong-Hyun [1 ]
Doo, Gisu [1 ]
Choi, Sungyu [1 ]
Lee, Dong Wook [1 ]
Hyun, Jonghyun [1 ]
Kwen, Jiyun [1 ]
Kim, Jun Young [2 ]
Kim, Hee-Tak [1 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] KOLON Ind Inc, R&D Div, 110 Magokdong Ro, Seoul 07793, South Korea
[3] KAIST Inst NanoCentury, Korea Adv Inst Sci & Technol KAIST, Adv Battery Ctr, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
Polymer electrolyte membrane fuel cell; Hydrogen starvation; Durability; Reversal tolerant anode; IrOx dissolution;
D O I
10.1016/j.jiec.2022.02.009
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A reversal tolerant anode (RTA) mitigates carbon corrosion under hydrogen starvation by promoting a water oxidation reaction with an oxygen-evolution-reaction catalyst. However, achieving long-lasting and repeatable voltage-reversal tolerance remains a challenge. Herein, we propose highly robust bilayered RTAs consisting of IrOx and Pt black layers (IrOx//Pt) for use in polymer electrolyte membrane fuel cells. Compared to bi-layered IrOx//Pt/C RTAs, the carbon-free IrOx//Pt RTAs have an exceptionally longer voltage-reversal time and unprecedented level of repeatability. Additionally, placing the IrOx layer on the membrane side of the RTA is more effective in maintaining the water oxidation reaction than placing it on the diffusion layer side. Oxidative dissolution of IrOx in the IrOx//Pt RTAs under repeated voltage reversals emphasizes the importance of lowering the water oxidation potential of RTA. The carbon-free, bi-layered RTA design presented in this work provides a new path for achieving long-lasting and repeatable voltagereversal tolerance. (c) 2022 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 45 条
[1]   Effect of anode iridium oxide content on the electrochemical performance and resistance to cell reversal potential of polymer electrolyte membrane fuel cells [J].
Ahn, Chi-Yeong ;
Kang, Sun Young ;
Choi, Hyuck Jae ;
Kim, Ok-Hee ;
Sung, Yung-Eun ;
Cho, Yong-Hun .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (27) :14713-14723
[2]  
Atanasoski R.T., 2013, LECT NOTES ENERGY, V9, DOI [10.1007/978-1-4471-4911-8_22, DOI 10.1007/978-1-4471-4911-8_22]
[3]   PEMFC Anode Durability: Innovative Characterization Methods and Further Insights on OER Based Reversal Tolerance [J].
Bentele, D. ;
Aylar, K. ;
Olsen, K. ;
Klemm, E. ;
Eberhardt, S. H. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (02)
[4]   Carbon corrosion: A novel termination mechanism of the water electrolysis plateau during voltage reversal [J].
Cai, Chao ;
Rao, Yan ;
Zhou, Jiangfeng ;
Zhang, Lichang ;
Chen, Wei ;
Wan, Zhaohui ;
Tan, Jinting ;
Pan, Mu .
JOURNAL OF POWER SOURCES, 2020, 473
[5]   Water electrolysis plateau in voltage reversal process for proton exchange membrane fuel cells [J].
Cai, Chao ;
Wan, Zhaohui ;
Rao, Yan ;
Chen, Wei ;
Zhou, Jiangfeng ;
Tan, Jinting ;
Pan, Mu .
JOURNAL OF POWER SOURCES, 2020, 455
[6]  
Deabate S., 2012, ENERG ENVIRON SCI, DOI [10.1039/c2-e21834h, DOI 10.1039/C2-E21834H]
[7]  
Emmanuel BO, 2018, IEEE ENER CONV, P3608, DOI 10.1109/ECCE.2018.8558474
[8]   Anode Degradation Effects in PEMFC Stacks by Localized Fuel Starvation [J].
Ferreira-Aparicio, P. ;
Chaparro, A. M. ;
Gallardo, B. ;
Folgado, M. A. ;
Daza, L. .
FUEL CELL SEMINAR 2009, 2010, 26 (01) :257-265
[9]  
Ge S., 2007, J ELECTROCHEM SOC, V154, P10, DOI [10.1149/1.2761830, DOI 10.1149/1.2761830]
[10]   On the impact of water activity on reversal tolerant fuel cell anode performance and durability [J].
Hong, Bo Ki ;
Mandal, Pratiti ;
Oh, Jong-Gil ;
Litster, Shawn .
JOURNAL OF POWER SOURCES, 2016, 328 :280-288