Ag-Coated Cu/Polylactic Acid Composite Filament for Lithium and Sodium-Ion Battery Current Collector Three-Dimensional Printing via Thermoplastic Material Extrusion

被引:16
作者
Maurel, Alexis [1 ,2 ,3 ]
Kim, Hyeonseok [1 ,3 ]
Russo, Roberto [1 ,3 ,4 ]
Grugeon, Sylvie [1 ,3 ]
Armand, Michel [1 ]
Panier, Stephane [2 ]
Dupont, Loic [1 ,3 ,5 ]
机构
[1] Univ Picardie Jules Verne, Lab React & Chim Solides, Amiens, France
[2] Univ Picardie Jules Verne, Lab Technol Innovantes, Amiens, France
[3] Reseau Francais Stockage Electrochim Energie, Amiens, France
[4] EDF R&D, Dept Elect Equipment Lab LME, Moret Sur Loing, France
[5] Univ Picardie Jules Verne, Plateforme Microscopie Elect PME, Amiens, France
关键词
lithium-ion battery; current collector; material extrusion; 3D-printing; composites;
D O I
10.3389/fenrg.2021.651041
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article focuses on the development of polylactic acid- (PLA-) based thermoplastic composite filament for its use, once 3D printed via thermoplastic material extrusion (TME), as current collector at the negative electrode side of a lithium-ion battery or sodium-ion battery. High electronic conductivity is achieved through the introduction of Ag-coated Cu charges, while appropriate mechanical performance to allow printability was maintained through the incorporation of poly(ethylene glycol) dimethyl ether average M-n similar to 500 (PEGDME500) as a plasticizer into the PLA polymer matrix. Herein, thermal, electrical, morphological, electrochemical, and printability characteristics are discussed thoroughly. While Ag-Li alloy formation is reported at 0.1V upon cycling, its use with active materials such as Li4Ti5O12 (LTO) or Li-2-terephthalate (Li2TP) operating at a plateau at higher potential is demonstrated. Furthermore, its ability to be used with negative electrode active material of sodium-ion battery technology in a wide potential window is demonstrated.
引用
收藏
页数:10
相关论文
共 36 条
[1]  
Armand M, 2009, NAT MATER, V8, P120, DOI [10.1038/NMAT2372, 10.1038/nmat2372]
[2]   3D Printing for Electrochemical Energy Applications [J].
Browne, Michelle P. ;
Redondo, Edurne ;
Pumera, Martin .
CHEMICAL REVIEWS, 2020, 120 (05) :2783-2810
[3]   3D Printing of Electrochemical Energy Storage Devices: A Review of Printing Techniques and Electrode/Electrolyte Architectures [J].
Cheng, Meng ;
Deivanayagam, Ramasubramonian ;
Shahbazian-Yassar, Reza .
BATTERIES & SUPERCAPS, 2020, 3 (02) :130-146
[4]   Novel rechargeable 3D-Microbatteries on 3D-printed-polymer substrates: Feasibility study [J].
Cohen, E. ;
Menkin, S. ;
Lifshits, M. ;
Kamir, Y. ;
Gladkich, A. ;
Kosa, G. ;
Golodnitsky, D. .
ELECTROCHIMICA ACTA, 2018, 265 :690-701
[5]   Recent advances and future challenges in printed batteries [J].
Costa, C. M. ;
Goncalves, R. ;
Lanceros-Mendez, S. .
ENERGY STORAGE MATERIALS, 2020, 28 :216-234
[6]   Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage [J].
Egorov, Vladimir ;
Gulzar, Umair ;
Zhang, Yan ;
Breen, Siobhan ;
O'Dwyer, Colm .
ADVANCED MATERIALS, 2020, 32 (29)
[7]   Graphite electrode thermal behavior and solid electrolyte interphase investigations: Role of state-of-the-art binders, carbonate additives and lithium bis(fluorosulfonyl)imide salt [J].
Forestier, Coralie ;
Grugeon, Sylvie ;
Davoisne, Carine ;
Lecocq, Amandine ;
Marlair, Guy ;
Armand, Michel ;
Sannier, Lucas ;
Laruelle, Stephane .
JOURNAL OF POWER SOURCES, 2016, 330 :186-194
[8]   Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries [J].
Fu, Kun ;
Wang, Yibo ;
Yan, Chaoyi ;
Yao, Yonggang ;
Chen, Yanan ;
Dai, Jiaqi ;
Lacey, Steven ;
Wang, Yanbin ;
Wan, Jiayu ;
Li, Tian ;
Wang, Zhengyang ;
Xu, Yue ;
Hu, Liangbing .
ADVANCED MATERIALS, 2016, 28 (13) :2587-+
[9]   Particle size effects on the electrochemical performance of copper oxides toward lithium [J].
Grugeon, S ;
Laruelle, S ;
Herrera-Urbina, R ;
Dupont, L ;
Poizot, P ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :A285-A292
[10]   Additive manufacturing for energy storage: Methods, designs and material selection for customizable 3D printed batteries and supercapacitors [J].
Gulzar, Umair ;
Glynn, Colm ;
O'Dwyer, Colm .
CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 20 :46-53