NONLOCAL SCHRODINGER EQUATIONS FOR INTEGRO-DIFFERENTIAL OPERATORS WITH MEASURABLE KERNELS

被引:6
作者
Duarte, Ronaldo C. [1 ]
Souto, Marco A. S. [2 ]
机构
[1] Univ Estado Rio Grande do Norte, Unidade Acad Matemat, BR-59610210 Mossoro, RN, Brazil
[2] Univ Fed Campina Grande, Dept Matemat, BR-58429010 Campina Grande, PB, Brazil
关键词
Integro-differential operator; nonlocal Schrodinger equation; asymptotic potential; POSITIVE SOLUTIONS; EXISTENCE; SYMMETRY; STATE;
D O I
10.12775/TMNA.2019.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the existence of positive solutions for the problem -L(K)u + V(x)u = f(u) in R-N, where -L-K is an integro-differential operator with measurable kernel K. Under apropriate hypotheses, we prove by variational methods that this equation has a nonnegative solution.
引用
收藏
页码:383 / 406
页数:24
相关论文
共 44 条
[1]   Improving the over-all performance of Li-S batteries via electrolyte optimization with consideration of loading condition [J].
Ai, Guo ;
Wang, Zhihui ;
Dai, Yiling ;
Mao, Wenfeng ;
Zhao, Hui ;
Fu, Yanbao ;
En, Yunfei ;
Battaglia, Vincent ;
Liu, Gao .
ELECTROCHIMICA ACTA, 2016, 218 :1-7
[2]   A nonlocal anisotropic model for phase transitions - Part I: The Optimal Profile Problem [J].
Alberti, G ;
Bellettini, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :527-560
[3]   A critical nonlinear fractional elliptic equation with saddle-like potential in RN [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
[4]   Existence of solutions for a class of elliptic equations in RN with vanishing potentials [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5555-5568
[5]   A FRACTIONAL LANDESMAN-LAZER TYPE PROBLEM SET ON R-N [J].
Ambrosio, Vincenzo .
MATEMATICHE, 2016, 71 (02) :99-116
[7]   CHARACTERIZATION OF RADIALLY SYMMETRIC FINITE TIME BLOWUP IN MULTIDIMENSIONAL AGGREGATION EQUATIONS [J].
Bertozzi, Andrea L. ;
Garnett, John B. ;
Laurent, Thomas .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) :651-681
[8]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008
[9]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3