Euclidean quotients of finite metric spaces

被引:42
作者
Mendel, M
Naor, A
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] Hebrew Univ Jerusalem, Sch Engn & Comp Sci, Jerusalem, Israel
关键词
D O I
10.1016/j.aim.2003.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of quotients of finite metric spaces. The basic type of question we ask is: Given a finite metric space M and alpha greater than or equal to 1, what is the largest quotient of (a subset of) M which well embeds into Hilbert space. We obtain asymptotically tight bounds for these questions, and prove that they exhibit phase transitions. We also study the analogous problem for embeddings into l(p), and the particular case of the hypercube. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:451 / 494
页数:44
相关论文
共 25 条
[11]   ON HILBERTIAN SUBSETS OF FINITE METRIC-SPACES [J].
BOURGAIN, J ;
FIGIEL, T ;
MILMAN, V .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 55 (02) :147-152
[12]   ON LIPSCHITZ EMBEDDING OF FINITE METRIC-SPACES IN HILBERT-SPACE [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 52 (1-2) :46-52
[13]  
BRETAGNO.J, 1965, CR HEBD ACAD SCI, V261, P2153
[14]  
Deza MM, 1997, Math. Methods Oper. Res., V15, DOI 10.1007/978-3-642-04295-9
[15]  
Dvoretzky A., 1961, PROC INTERNAT SYMPOS, P123
[16]   ON NONEXISTENCE OF UNIFORM HOMEOMORPHISMS BETWEEN LP-SPACES [J].
ENFLO, P .
ARKIV FOR MATEMATIK, 1970, 8 (02) :103-&
[17]  
GROMOV M, 1999, PROGR MATH, V152
[18]  
Lennard CJ, 1997, MICH MATH J, V44, P37
[19]   On embedding expanders into lp spaces [J].
Matousek, J .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 102 (1) :189-197
[20]  
Milman V., 1971, FUNCT ANAL APPL, V5, P28