A Hierarchical Model for Lithium-Ion Battery Degradation Prediction

被引:37
作者
Xu, Xin [1 ]
Li, Zhiguo [1 ,2 ]
Chen, Nan [1 ]
机构
[1] Natl Univ Singapore, Dept Ind & Syst Engn, Singapore 117576, Singapore
[2] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
新加坡国家研究基金会;
关键词
Degradation; discharging profile; Gibbs sampling; hierarchical model; lithium-ion battery; remaining useful cycles; smoothing spline; REMAINING USEFUL LIFE; PARTICLE SWARM OPTIMIZATION; PROGNOSTICS;
D O I
10.1109/TR.2015.2451074
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Developing prognostics and health management (PHM) approaches for lithium-ion batteries has received increasing attention in recent years. This paper presents a new modeling framework to characterize lithium-ion battery degradation by examining detailed discharging voltage profiles in different discharging cycles. We propose a hierarchical model, combining discharging processes and degradation processes, to predict the end of discharges in different cycles and remaining useful cycles integratively. We use a real case study to demonstrate the effectiveness and promising features of the proposed framework.
引用
收藏
页码:310 / 325
页数:16
相关论文
共 20 条
[1]  
[Anonymous], P EUR C PROGN HLTH M
[2]  
[Anonymous], 1971, An Introduction to Bayesian Inference in Econometrics
[3]   Statistical analysis for understanding and predicting battery degradations in real-life electric vehicle use [J].
Barre, Anthony ;
Suard, Frederic ;
Gerard, Mathias ;
Montaru, Maxime ;
Riu, Delphine .
JOURNAL OF POWER SOURCES, 2014, 245 :846-856
[4]   A review on lithium-ion battery ageing mechanisms and estimations for automotive applications [J].
Barre, Anthony ;
Deguilhem, Benjamin ;
Grolleau, Sebastien ;
Gerard, Mathias ;
Suard, Frederic ;
Riu, Delphine .
JOURNAL OF POWER SOURCES, 2013, 241 :680-689
[5]  
Bowerman B., 2005, Forecasting, Time Series, and Regression: An Applied Approach
[6]   Prior distributions for variance parameters in hierarchical models(Comment on an Article by Browne and Draper) [J].
Gelman, Andrew .
BAYESIAN ANALYSIS, 2006, 1 (03) :515-533
[7]   Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method [J].
He, Wei ;
Williard, Nicholas ;
Osterman, Michael ;
Pecht, Michael .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :10314-10321
[8]  
Kozlowski JD, 2003, AEROSP CONF PROC, P3257
[9]   A data-model-fusion prognostic framework for dynamic system state forecasting [J].
Liu, J. ;
Wang, W. ;
Ma, F. ;
Yang, Y. B. ;
Yang, C. S. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (04) :814-823
[10]   An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries [J].
Long, Bing ;
Xian, Weiming ;
Jiang, Lin ;
Liu, Zhen .
MICROELECTRONICS RELIABILITY, 2013, 53 (06) :821-831