High-Performance Thin-Film Transistors with Aqueous Solution-Processed NiInO Channel Layer

被引:28
作者
Li, Yujia [1 ]
Xu, Wangying [1 ]
Liu, Wenjun [1 ]
Han, Shun [1 ]
Cao, Peijiang [1 ]
Fang, Ming [1 ]
Zhu, Deliang [1 ]
Lu, Youming [1 ]
机构
[1] Shenzhen Univ, Guangdong Res Ctr Interfacial Engn Funct Mat, Coll Mat Sci & Engn, Shenzhen Key Lab Special Funct Mat, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni doping; In2O3; thin-film transistors; aqueous-solution-processed; high-performance; stability; LOW-TEMPERATURE; SOL-GEL; OXIDE; IMPROVEMENT; ZNO;
D O I
10.1021/acsaelm.9b00377
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report the aqueous-solution-processed Ni-doped In2O3 (NixIn(2-x)O(3), NiInO) thin-film transistors (TFTs) for the first time. The effect of Ni doping on In2O3 microstructure, oxygen defects, and the electron transport properties are investigated by extensive characterization techniques. Analyses indicate that the oxygen vacancies in NiInO are suppressed as the Ni-doping concentration increases, leading to a lower off-state current and a positive shift in threshold voltage. The optimized NiInO TFTs exhibit a high mobility of 17.71 cm(2)/(V s), on/off current ratio > 10(6), threshold voltage of 4.21 V, and superior bias stress stability. The success of Ni doping could be attributed to the small ion radius of Ni, large Lewis acid value, and strong Ni-O bond strength. Therefore, the fabricated NiInO TFT provides a bright path for the development of high-performance oxide TFTs.
引用
收藏
页码:1842 / 1851
页数:19
相关论文
共 47 条
[1]   Suppression of excess oxygen for environmentally stable amorphous In-Si-O thin-film transistors [J].
Aikawa, Shinya ;
Mitoma, Nobuhiko ;
Kizu, Takio ;
Nabatame, Toshihide ;
Tsukagoshi, Kazuhito .
APPLIED PHYSICS LETTERS, 2015, 106 (19)
[2]   Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a 'sol-gel on chip' process [J].
Banger, K. K. ;
Yamashita, Y. ;
Mori, K. ;
Peterson, R. L. ;
Leedham, T. ;
Rickard, J. ;
Sirringhaus, H. .
NATURE MATERIALS, 2011, 10 (01) :45-50
[3]   Room-temperature ultraviolet-emitting In2O3 nanowires [J].
Cao, HQ ;
Qiu, XQ ;
Liang, Y ;
Zhu, QM ;
Zhao, MJ .
APPLIED PHYSICS LETTERS, 2003, 83 (04) :761-763
[4]   Instabilities in Amorphous Oxide Semiconductor Thin-Film Transistors [J].
Conley, John F., Jr. .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2010, 10 (04) :460-475
[5]   Enhanced nucleation, growth rate, and dopant incorporation in ZnO nanowires [J].
Cui, JB ;
Gibson, UJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (46) :22074-22077
[6]   Band Gap Tuning in ZnO Through Ni Doping via Spray Pyrolysis [J].
Das, Sanjoy C. ;
Green, Robert J. ;
Podder, Jiban ;
Regier, Tom Z. ;
Chang, Gap Soo ;
Moewes, Alexander .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (24) :12745-12753
[7]   Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors [J].
Gandla, Srinivas ;
Gollu, Sankara Rao ;
Sharma, Ramakant ;
Sarangi, Venkateshwarlu ;
Gupta, Dipti .
APPLIED PHYSICS LETTERS, 2015, 107 (15)
[8]   Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence [J].
Guidelli, E. J. ;
Baffa, O. ;
Clarke, D. R. .
SCIENTIFIC REPORTS, 2015, 5
[9]   Low-Temperature, High-Performance, Solution-Processed Indium Oxide Thin-Film Transistors [J].
Han, Seung-Yeol ;
Herman, Gregory S. ;
Chang, Chih-hung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (14) :5166-5169
[10]   Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors [J].
Jeong, Jae Kyeong ;
Yang, Hui Won ;
Jeong, Jong Han ;
Mo, Yeon-Gon ;
Kim, Hye Dong .
APPLIED PHYSICS LETTERS, 2008, 93 (12)