Realizing Hopf Insulators in Dipolar Spin Systems

被引:19
作者
Schuster, Thomas [1 ]
Flicker, Felix [1 ,2 ]
Li, Ming [3 ]
Kotochigova, Svetlana [3 ]
Moore, Joel E. [1 ,4 ]
Ye, Jun [5 ,6 ]
Yao, Norman Y. [1 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Oxford, Rudolph Peierls Ctr Theoret Phys, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[3] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] Univ Colorado, NIST, JILA, Boulder, CO 80309 USA
[6] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
TOPOLOGICAL INSULATORS; REACTIVE MOLECULES; QUANTUM; GAS;
D O I
10.1103/PhysRevLett.127.015301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hopf insulator is a weak topological insulator characterized by an insulating bulk with conducting edge states protected by an integer-valued linking number invariant. The state exists in three-dimensional two-band models. We demonstrate that the Hopf insulator can be naturally realized in lattices of dipolar-interacting spins, where spin exchange plays the role of particle hopping. The long-ranged, anisotropic nature of the dipole-dipole interactions allows for the precise detail required in the momentum-space structure, while different spin orientations ensure the necessary structure of the complex phases of the hoppings. Our model features robust gapless edge states at both smooth edges, as well as sharp edges obeying a certain crystalline symmetry, despite the breakdown of the two-band picture at the latter. In an accompanying paper [T. Schuster et al, Phys. Rev. A 103, AW11986 (2021)] we provide a specific experimental blueprint for implementing our proposal using ultracold polar molecules of (KRb)-K-40-Rb-87.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Topological Insulators on the Ruby Lattice with Rashba Spin-Orbit Coupling
    侯净敏
    王国祥
    Communications in Theoretical Physics, 2013, 60 (07) : 129 - 135
  • [42] Floquet engineering of Mott insulators with strong spin-orbit coupling
    Arakawa, Naoya
    Yonemitsu, Kenji
    PHYSICAL REVIEW B, 2021, 103 (10)
  • [43] Room Temperature Quantum Spin Hall Insulators with a Buckled Square Lattice
    Luo, Wei
    Xiang, Hongjun
    NANO LETTERS, 2015, 15 (05) : 3230 - 3235
  • [44] Direct visualization of current-induced spin accumulation in topological insulators
    Liu, Yang
    Besbas, Jean
    Wang, Yi
    He, Pan
    Chen, Mengji
    Zhu, Dapeng
    Wu, Yang
    Lee, Jong Min
    Wang, Lan
    Moon, Jisoo
    Koirala, Nikesh
    Oh, Seongshik
    Yang, Hyunsoo
    NATURE COMMUNICATIONS, 2018, 9
  • [45] Large-Gap Quantum Spin Hall Insulators in Tin Films
    Xu, Yong
    Yan, Binghai
    Zhang, Hai-Jun
    Wang, Jing
    Xu, Gang
    Tang, Peizhe
    Duan, Wenhui
    Zhang, Shou-Cheng
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)
  • [46] Topological Transport in Spin-Orbit Coupled Bosonic Mott Insulators
    Wong, C. H.
    Duine, R. A.
    PHYSICAL REVIEW LETTERS, 2013, 110 (11)
  • [47] Magnetic field characterization of edge currents in quantum spin Hall insulators
    Pinto, Felipe A.
    Heitzer, Ricardo C.
    Dvorquez, Eitan
    Rodriguez, Roberto
    Sun, Qiang
    Greentree, Andrew D.
    Gibson, Brant C.
    Maze, Jeronimo R.
    NEW JOURNAL OF PHYSICS, 2025, 27 (01):
  • [48] Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits
    Chatterjee, Shubhayu
    Rodriguez-Nieva, Joaquin F.
    Demler, Eugene
    PHYSICAL REVIEW B, 2019, 99 (10)
  • [49] Magneto-optical spin Hall effect of light in topological insulators
    Zhou, Xiang
    Ding, Yiping
    Yue, Qinxin
    He, Shangling
    He, Yingji
    Deng, Dongmei
    OPTICS AND LASER TECHNOLOGY, 2022, 155
  • [50] Measuring Bipartite Spin Correlations of Lattice-Trapped Dipolar Atoms
    Alaoui, Youssef Aziz
    Muleady, Sean R.
    Chaparro, Edwin
    Trifa, Youssef
    Rey, Ana Maria
    Roscilde, Tommaso
    Laburthe-Tolra, Bruno
    Vernac, Laurent
    PHYSICAL REVIEW LETTERS, 2024, 133 (20)