Electronic Structure of the Plasmons in Metal Nanocrystals: Fundamental Limitations for the Energy Efficiency of Hot Electron Generation

被引:113
作者
Chang, Le [1 ]
Besteiro, Lucas V. [1 ,2 ]
Sun, Jiachen [1 ]
Santiago, Eva Yazmin [4 ]
Gray, Stephen K. [3 ]
Wang, Zhiming [1 ]
Govorov, Alexander O. [1 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[2] Inst Natl Rech Sci, Ctr Energie Mat & Telecommun, Varennes, PQ J3X 1S2, Canada
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[4] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
DYNAMICS; GOLD; QUANTUM; CARRIER; MECHANISMS; RESONANCES; SIZE; RELAXATION;
D O I
10.1021/acsenergylett.9b01617
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This Review discusses the electronic structure of plasmonic resonances in metal nanostructures, clarifying existing misconceptions on the topic. Here we underscore the key property of the plasmonic response in metal nanocrystals: the plasmon and its wave function are mostly composed of a large number of low-energy excitations, which involve electrons near the Fermi level. Simultaneously, some number of high-energy hot electrons are excited in a nanocrystal due to the scattering of electrons by surfaces and in hot spots. It is an established fact that plasmon excitations are well described by classical frameworks, considering the collective oscillation of low-energy carriers moving as the result of classical acceleration. This classical motion is intrinsically dissipative and leads to heating. On the other hand, the generation of hot electrons in nanocrystals is a quantum surface effect. The energy efficiency of such Metal Semiconductor hot-electron processes is always limited. However, there are interesting possibilities for the hot-electron enhancement, which we discuss here in the context of applications for plasmonic photodetectors, photocatalysis, and ultrafast spectroscopy.
引用
收藏
页码:2552 / 2568
页数:33
相关论文
共 78 条
[51]   Applying plasmonics to a sustainable future [J].
Naldoni, Alberto ;
Shalaev, Vladimir M. ;
Brongersma, Mark L. .
SCIENCE, 2017, 356 (6341) :908-909
[52]   Traveling Hot Spots in Plasmonic Photocatalysis: Manipulating Interparticle Spacing for Real-Time Control of Electron Injection [J].
Negrin-Montecelo, Yoel ;
Comesana-Hermo, Miguel ;
Kong, Xiang-Tian ;
Rodriguez-Gonzalez, Benito ;
Wang, Zhiming ;
Perez-Lorenzo, Moises ;
Govorov, Alexander O. ;
Correa-Duarte, Miguel A. .
CHEMCATCHEM, 2018, 10 (07) :1561-1565
[53]   Spectral Screening of the Energy of Hot Holes over a Particle Plasmon Resonance [J].
Pensa, Evangelina ;
Gargiulo, Julian ;
Lauri, Alberto ;
Schluecker, Sebastian ;
Cortes, Emiliano ;
Maier, Stefan A. .
NANO LETTERS, 2019, 19 (03) :1867-1874
[54]  
Platzman P. M., 1973, Waves and interactions in solid state plasmas
[55]   Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparticles [J].
Saavedra, J. R. M. ;
Asenjo-Garcia, Ana ;
Javier Garcia de Abajo, F. .
ACS PHOTONICS, 2016, 3 (09) :1637-1646
[56]   Charge-Tunable Quantum Plasmons in Colloidal Semiconductor Nanocrystals [J].
Schimpf, Alina M. ;
Thakkar, Niket ;
Gunthardt, Carolyn E. ;
Masiello, David J. ;
Gamelin, Daniel R. .
ACS NANO, 2014, 8 (01) :1065-1072
[57]   Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au-TiO2 Nanoarchitectures [J].
Sousa-Castillo, Ana ;
Comesana-Hermo, Miguel ;
Rodriguez-Gonzalez, Benito ;
Perez-Lorenzo, Moises ;
Wang, Zhiming ;
Kong, Xiang-Tian ;
Govorov, Alexander O. ;
Correa-Duarte, Miguel A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (21) :11690-11699
[58]   Theoretical predictions for hot-carrier generation from surface plasmon decay [J].
Sundararaman, Ravishankar ;
Narang, Prineha ;
Jermyn, Adam S. ;
Goddard, William A., III ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2014, 5
[59]   Enhanced generation and anisotropic Coulomb scattering of hot electrons in an ultra-broadband plasmonic nanopatch metasurface [J].
Sykes, Matthew E. ;
Stewart, Jon W. ;
Akselrod, Gleb M. ;
Kong, Xiang-Tian ;
Wang, Zhiming ;
Gosztola, David J. ;
Martinson, Alex B. F. ;
Rosenmann, Daniel ;
Mikkelsen, Maiken H. ;
Govorov, Alexander O. ;
Wiederrecht, Gary P. .
NATURE COMMUNICATIONS, 2017, 8
[60]  
Sze S.M., 2021, Physics of Semiconductor Devices