A Fast Incremental Clustering Algorithm

被引:0
作者
Su, Xiaoke [1 ]
Lan, Yang [2 ]
Wan, Renxia [1 ]
Qin, Yuming [1 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Xinyang Normal Univ, Sch Comp & Informat Technol, Xinyang 464000, Henan, Peoples R China
来源
ISIP: 2009 INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING, PROCEEDINGS | 2009年
基金
中国国家自然科学基金;
关键词
incremental clustering; categorical data; radius threshold value; inter-cluster dissimilarity measure; clustering accuracy; data mining;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering has played a very important role in data mining. In this paper, a fast incremental clustering algorithm is proposed by changing the radius threshold value dynamically. The algorithm restricts the number of the final clusters and reads the original dataset only once. At the same time an inter-cluster dissimilarity measure taking into account the frequency information of the attribute values is introduced. It can be used for the categorical data. The experimental results on the mushroom dataset show that the proposed algorithm is feasible and effective. It can be used for the large-scale data set.
引用
收藏
页码:175 / +
页数:2
相关论文
共 50 条
  • [31] Incremental clustering algorithm of data stream based on artificial immune network
    Yue, Xun
    Chi, Zhongxian
    Hao, Yanyou
    Mo, Hongwei
    Yue, Xun
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 4021 - +
  • [32] AN INCREMENTAL GRID CLUSTERING ALGORITHM BASED ON DENSITY-DIMENSION-TREE
    Huang, Jiaolong
    Zhang, Xiaolong
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 356 - 361
  • [33] An adaptive dynamic community detection algorithm based on incremental spectral clustering
    School of Informatics, Guangdong University of Foreign Studies, Guangzhou
    510006, China
    不详
    510420, China
    不详
    510006, China
    [J]. Zidonghua Xuebao Acta Auto. Sin., 12 (2017-2025): : 2017 - 2025
  • [34] Efficient incremental density-based algorithm for clustering large datasets
    Bakr, Ahmad M.
    Ghanem, Nagia M.
    Ismail, Mohamed A.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2015, 54 (04) : 1147 - 1154
  • [35] An efficient automated incremental density-based algorithm for clustering and classification
    Azhir, Elham
    Navimipour, Nima Jafari
    Hosseinzadeh, Mehdi
    Sharifi, Arash
    Darwesh, Aso
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 114 (114): : 665 - 678
  • [36] An Incremental CFS Algorithm for Clustering Large Data in Industrial Internet of Things
    Zhang, Qingchen
    Zhu, Chunsheng
    Yang, Laurence T.
    Chen, Zhikui
    Zhao, Liang
    Li, Peng
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (03) : 1193 - 1201
  • [37] Incremental k⁃means clustering algorithm based on multi⁃sphere splitting
    Qu F.-H.
    Qian C.-Y.
    Yang Y.
    Lu Y.
    Song J.-F.
    Hu Y.-T.
    [J]. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (06): : 1434 - 1441
  • [38] A novel cluster center fast determination clustering algorithm
    Chen Jinyin
    Lin Xiang
    Zheng Haibing
    Bao Xintong
    [J]. APPLIED SOFT COMPUTING, 2017, 57 : 539 - 555
  • [39] Dynamic Incremental K-means Clustering
    Aaron, Bryant
    Tamir, Dan E.
    Rishe, Naphtali D.
    Kandel, Abraham
    [J]. 2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), VOL 1, 2014, : 308 - 313
  • [40] A fast incremental extreme learning machine algorithm for data streams classification
    Xu, Shuliang
    Wang, Junhong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 65 : 332 - 344