Leptin, the product of the obesity (ob) gene, controls energy intake and expenditure primarily by actions on the central nervous system. However, recently it has become apparent that leptin also elicits a growing and diverse array of effects on peripheral tissues. The Na,K-pump is an electrogenic plasma membrane protein which actively extrudes 3Na(+) ions and imports 2K(+) ions per molecule of ATP hydrolysed. The pump is responsible for the maintenance of the electrochemical potential of all cells, which in turn drives all ion-coupled transport mechanisms. In this study we use 3T3-L1 fibroblasts to show that leptin inhibits Na,K-pump activity, as assessed by ouabain-sensitive Rb-86(+) uptake. Inhibition of the Na,K-pump correlated with increased serine phosphorylation of the catalytic Na,K-pump alpha 1 subunit. Upon investigation of leptin-stimulated signalling pathways using specific pharmacological inhibitors, only wortmannin prevented inhibition of the Na,K-pump by leptin. Moreover, leptin stimulated phosphotyrosine-associated PI 3-kinase activity in these cells. In summary, leptin was found to inhibit Na,K-pump activity, likely via PI 3-kinase. We propose that this effect may have wide ranging cardiovascular and metabolic implications and perhaps explain physiological effects of the hormone such as natriuresis.