Flatness-based boundary control of a class of quasilinear parabolic distributed parameter systems

被引:67
作者
Lynch, AF [1 ]
Rudolph, J
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
[2] Tech Univ Dresden, Inst Regelungs & Stuerungstheorie, D-01062 Dresden, Germany
关键词
Chemical reactors - Heat conduction - Mathematical models - Motion planning - Partial differential equations - Robot applications - Robotic arms;
D O I
10.1080/00207170210163640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motion planning and control of a boundary controlled quasilinear parabolic partial differential equation in one spatial variable is considered. The approach relies on a flatness property of the system; namely, that the system solution can be differentially parameterized in terms of a flat output which, in the case considered, is a boundary value. Such a parameterization allows straightforward motion planning and computation of a control law. The approach is based on power series in the spatial variable, and the convergence of these series is ensured by choosing the flat output to be a nonanalytic, smooth function of appropriate Gevrey class.
引用
收藏
页码:1219 / 1230
页数:12
相关论文
共 35 条
  • [21] LAROCHE B, 1998, P 37 IEEE C DEC CONT, P736
  • [22] Levine J., 1999, Advances in Control. Highlights of ECC'99, P197
  • [23] Lynch A. F., 2000, Automatisierungstechnik, V48, P478, DOI 10.1524/auto.2000.48.10.478
  • [24] LYNCH AF, 2000, P INT S NONL THEOR I, V2, P641
  • [25] LYNCH AF, 2000, NONLINEAR CONTROL YE
  • [26] Mounier H., 1995, Proceedings of the Third European Control Conference. ECC 95, P3676
  • [27] OLLIVIER F, 2001, P 5 IFAC S NONL CONT
  • [28] Olver P.J., 1995, Equivalence, Invariants and Symmetry, DOI [10.1017/CBO9780511609565, DOI 10.1017/CBO9780511609565]
  • [29] Flatness of heavy chain systems
    Petit, N
    Rouchon, P
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (02) : 475 - 495
  • [30] PETIT N, 2000, THESIS ECOLE MINES P