3D printed microfluidic devices: enablers and barriers

被引:801
|
作者
Waheed, Sidra [1 ,2 ]
Cabot, Joan M. [1 ,2 ]
Macdonald, Niall P. [1 ,2 ]
Lewis, Trevor [2 ]
Guijt, Rosanne M. [3 ]
Paull, Brett [1 ,2 ]
Breadmore, Michael C. [1 ,2 ]
机构
[1] Univ Tasmania, Sch Phys Sci, Australian Ctr Res Separat Sci ACROSS, Hobart, Tas 7001, Australia
[2] Univ Tasmania, Sch Phys Sci, ARC Ctr Excellence Electromat Sci ACES, Hobart, Tas 7001, Australia
[3] Univ Tasmania, Pharm Sch Med, Australian Ctr Res Separat Sci ACROSS, Hobart, Tas 7001, Australia
关键词
3D-PRINTED FLUIDIC DEVICES; 2-PHOTON POLYMERIZATION; CHEMICAL-SYNTHESIS; POWERFUL TOOL; FABRICATION; CHIP; STEREOLITHOGRAPHY; MICROFABRICATION; LAB; REACTIONWARE;
D O I
10.1039/c6lc00284f
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
3D printing has the potential to significantly change the field of microfluidics. The ability to fabricate a complete microfluidic device in a single step from a computer model has obvious attractions, but it is the ability to create truly three dimensional structures that will provide new microfluidic capability that is challenging, if not impossible to make with existing approaches. This critical review covers the current state of 3D printing for microfluidics, focusing on the four most frequently used printing approaches: inkjet (i3DP), stereolithography (SLA), two photon polymerisation (2PP) and extrusion printing (focusing on fused deposition modeling). It discusses current achievements and limitations, and opportunities for advancement to reach 3D printing's full potential.
引用
收藏
页码:1993 / 2013
页数:21
相关论文
共 50 条
  • [21] A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications
    Duarte, Lucas C.
    Figueredo, Federico
    Chagas, Cyro L. S.
    Corton, Eduardo
    Coltro, Wendell K. T.
    ANALYTICA CHIMICA ACTA, 2024, 1299
  • [22] Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices
    Saggiomo, Vittorio
    Velders, Aldrik H.
    ADVANCED SCIENCE, 2015, 2 (09):
  • [23] A 3D printed microfluidic particle sorting device
    Blomdahl, Jacob
    Putzke, Aaron
    Measor, Philip
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS XXII, 2024, 12837
  • [24] 3D Printed Customizable Microsampling Devices for Neuroscience Applications
    Pysz, Patrick M.
    Hoskins, Julia K.
    Zou, Min
    Stenken, Julie A.
    ACS CHEMICAL NEUROSCIENCE, 2023, : 3278 - 3287
  • [25] Hyperporous carbon-coated 3D printed devices
    Medina, Deyber A., V
    Figuerola, Andreu
    Rodriguez, Felipe
    Santos-Neto, Alvaro J.
    Cabello, Carlos P.
    Palomino, Gemma T.
    Cerda, Victor
    Maya, Fernando
    APPLIED MATERIALS TODAY, 2019, 14 : 29 - 34
  • [26] High-performance microchip electrophoresis separations of preterm birth biomarkers using 3D printed microfluidic devices
    Esene, Joule E.
    Nasman, Parker R.
    Miner, Dallin S.
    Nordin, Gregory P.
    Woolley, Adam T.
    JOURNAL OF CHROMATOGRAPHY A, 2023, 1706
  • [27] 3D-printed bioanalytical devices
    Bishop, Gregory W.
    Satterwhite-Warden, Jennifer E.
    Kadimisetty, Karteek
    Rusling, James F.
    NANOTECHNOLOGY, 2016, 27 (28)
  • [28] Recent Progress of 3D Printed Microfluidics Technologies
    Fan Yi-Qiang
    Wang Mei
    Zhang Ya-Jun
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2016, 44 (04) : 551 - 561
  • [29] A Review on 3D Printed Smart Devices for 4D Printing
    Lee, Jeongwoo
    Kim, Ho-Chan
    Choi, Jae-Won
    Lee, In Hwan
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2017, 4 (03) : 373 - 383
  • [30] A biocompatible 3D printed microfluidic C. elegans analysis device
    Burchard, Taylor
    Putzke, Aaron
    Measor, Philip
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS XX, 2022, 11955