3D printed microfluidic devices: enablers and barriers

被引:820
作者
Waheed, Sidra [1 ,2 ]
Cabot, Joan M. [1 ,2 ]
Macdonald, Niall P. [1 ,2 ]
Lewis, Trevor [2 ]
Guijt, Rosanne M. [3 ]
Paull, Brett [1 ,2 ]
Breadmore, Michael C. [1 ,2 ]
机构
[1] Univ Tasmania, Sch Phys Sci, Australian Ctr Res Separat Sci ACROSS, Hobart, Tas 7001, Australia
[2] Univ Tasmania, Sch Phys Sci, ARC Ctr Excellence Electromat Sci ACES, Hobart, Tas 7001, Australia
[3] Univ Tasmania, Pharm Sch Med, Australian Ctr Res Separat Sci ACROSS, Hobart, Tas 7001, Australia
关键词
3D-PRINTED FLUIDIC DEVICES; 2-PHOTON POLYMERIZATION; CHEMICAL-SYNTHESIS; POWERFUL TOOL; FABRICATION; CHIP; STEREOLITHOGRAPHY; MICROFABRICATION; LAB; REACTIONWARE;
D O I
10.1039/c6lc00284f
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
3D printing has the potential to significantly change the field of microfluidics. The ability to fabricate a complete microfluidic device in a single step from a computer model has obvious attractions, but it is the ability to create truly three dimensional structures that will provide new microfluidic capability that is challenging, if not impossible to make with existing approaches. This critical review covers the current state of 3D printing for microfluidics, focusing on the four most frequently used printing approaches: inkjet (i3DP), stereolithography (SLA), two photon polymerisation (2PP) and extrusion printing (focusing on fused deposition modeling). It discusses current achievements and limitations, and opportunities for advancement to reach 3D printing's full potential.
引用
收藏
页码:1993 / 2013
页数:21
相关论文
共 124 条
[1]   A 3D Printed Fluidic Device that Enables Integrated Features [J].
Anderson, Kari B. ;
Lockwood, Sarah Y. ;
Martin, R. Scott ;
Spence, Dana M. .
ANALYTICAL CHEMISTRY, 2013, 85 (12) :5622-5626
[2]  
[Anonymous], 2014, METAL POWDER REPORT, V69, P42
[3]   3D-Printed Microfluidics [J].
Au, Anthony K. ;
Huynh, Wilson ;
Horowitz, Lisa F. ;
Folch, Albert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :3862-3881
[4]   3D-printed microfluidic automation [J].
Au, Anthony K. ;
Bhattacharjee, Nirveek ;
Horowitz, Lisa F. ;
Chang, Tim C. ;
Folch, Albert .
LAB ON A CHIP, 2015, 15 (08) :1934-1941
[5]   Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices [J].
Au, Anthony K. ;
Lee, Wonjae ;
Folch, Albert .
LAB ON A CHIP, 2014, 14 (07) :1294-1301
[6]  
Bartolo PJ, 2011, STEREOLITHOGRAPHY: MATERIALS, PROCESSES AND APPLICATIONS, P1
[7]   Polymer microfluidic devices [J].
Becker, H ;
Locascio, LE .
TALANTA, 2002, 56 (02) :267-287
[8]   Hype, hope and hubris: the quest for the killer application in microfluidics [J].
Becker, Holger .
LAB ON A CHIP, 2009, 9 (15) :2119-2122
[9]  
Bhargava K. C., 2014, DISCRETE ELEMENTS 3D
[10]   A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering [J].
Billiet, Thomas ;
Vandenhaute, Mieke ;
Schelfhout, Jorg ;
Van Vlierberghe, Sandra ;
Dubruel, Peter .
BIOMATERIALS, 2012, 33 (26) :6020-6041