Ricci solitons and odd-dimensional spheres

被引:3
作者
Cho, Jong Taek [1 ]
机构
[1] Chonnam Natl Univ, Dept Math, CNU Inst Basic Sci, Kwangju 500757, South Korea
来源
MONATSHEFTE FUR MATHEMATIK | 2010年 / 160卷 / 04期
关键词
Spheres; Shape operators; Reeb vector fields; Ricci solitons;
D O I
10.1007/s00605-009-0095-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As a real hypersurface in a complex space, we prove two criterion inequalities for an odd-dimensional sphere in terms of the shape operator, the Reeb vector field and its associated 1-form. Also, we determine a real hypersurface in a complex space which admits a Ricci soliton with the Reeb vector field the potential vector field.
引用
收藏
页码:347 / 357
页数:11
相关论文
共 10 条
[1]  
Cho JT, 1999, PUBL MATH-DEBRECEN, V54, P473
[2]  
CHO JT, TOHOKU MATH IN PRESS
[3]  
Chow B., 2004, Mathematical Surveys and Monographs, V110
[4]  
Hamilton RS., 1988, Contemp. Math, V71, P237, DOI [DOI 10.1090/CONM/071/954419, 10.1090/conm/071/954419]
[5]   ON SPHERICAL IMAGE MAPS WHOSE JACOBIANS DO NOT CHANGE SIGN [J].
HARTMAN, P ;
NIRENBERG, L .
AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (04) :901-920
[6]   RICCI SOLITONS ON COMPACT 3-MANIFOLDS [J].
IVEY, T .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1993, 3 (04) :301-307
[7]  
Okumura M., 1966, TOHOKU MATH J, V18, P74
[8]  
Perelman G., ENTROPY FORMULA RICC
[9]  
Segre B., 1938, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., V27, P203
[10]   ON HARMONIC AND KILLING VECTOR FIELDS [J].
YANO, K .
ANNALS OF MATHEMATICS, 1952, 55 (01) :38-45