Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO2 and SnO2 Nanoparticles for High-Efficiency Stable Perovskite Solar Cells

被引:26
作者
Chiang, Chien-Hung [1 ,2 ]
Kan, Chun-Wei [1 ]
Wu, Chun-Guey [1 ,2 ]
机构
[1] Natl Cent Univ, Dept Chem, Chungli 32001, Taiwan
[2] Natl Cent Univ, Res Ctr New Generat Light Driven Photovolta Modul, Chungli 32001, Taiwan
关键词
perovskite; solar cell; electron transport; metal oxide nanocomposite; double layer; low temperature; PERFORMANCE; HYSTERESIS; PASSIVATION; EXTRACTION; STRATEGY;
D O I
10.1021/acsami.1c02105
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A simple, synergistic engineering of the conduction band (CB), conductivity, and interface of TiO2-based bilayered electron transport layers (ETLs) via scalable TiO2 and SnO2 nanoparticles processed at low temperature (<= 100 degrees C) for regular planar perovskite solar cells (PSCs) was developed. The bottom layer (Lt-TiO2:SnO2 nanocomposite film) was prepared by spin coating from the ethanol suspension of small ground TiO2 nanoparticles with big ground SnO2 nanoparticles as the additive. The top C-SnO2 layer (spin-coated from the concentrated commercial SnO2 nanoparticles (C-SnO2 NPs, 20 wt %, 7 nm in size suspended in H2O)) can be regarded as an interlayer between Lt-TiO2:SnO2 and perovskite (Psk) absorbers. Bilayered Lt-TiO2:SnO2/C-SnO2 ETLs are dense films with a cascade CB, good conductivity, facile electron extraction/transport ability, and a highly hydrophilic surface for depositing high-quality Psk films. Regular planar PSCs based on Lt-TiO2 : SnO2/C-SnO2 ETLs combined with a (FAI)(0.90)(PbI2)(0.94)(MABr)(0.10)(PbBr2)(0.10) absorber and a spiro-OMeTAD hole transporter achieved the highest power conversion efficiency of 22.04% with a negligible current hysteresis. The champion cell lost less than 3% of the initial efficiency under continuous room lighting (1000 lux) for 1000 h (lost 10% after 2184 h) without encapsulation under an inert atmosphere. Four related low-temperature-processed ETLs (Lt-TiO2/C-SnO2, Lt-C-SnO2, Lt-TiO2:SnO2, and Lt-TiO2) were fabricated using the same metal oxide nanoparticle suspensions and studied simultaneously to reveal the function of each metal oxide in the bilayered Lt-TiO2:SnO2/C-SnO2 ETLs. In the bottom Lt-TiO2:SnO2 layer, small TiO2 nanoparticles were needed for making a dense film, and highly conducting big SnO2 nanoparticles are used to increase the conductivity of ETLs and a handy electron transport path for reducing the charge accumulation and series resistance of the cell. A top C-SnO2 layer (regarded as an interlayer between Psk and Lt-TiO2:SnO2) was used to extract/transport electrons facilely, to form a bilayered ETL with a cascade CB, and to create a hydrophilic surface to deposit high-quality Psk films to enhance the photovoltaic performance of the PSCs. This study provides a blueprint for designing good-performance ETLs for high-efficiency, stable regular planar PSCs using various sized nanoparticles prepared in a very simple and low-cost way.
引用
收藏
页码:23606 / 23615
页数:10
相关论文
共 64 条
[31]   Stacking n-type layers: Effective route towards stable, efficient and hysteresis-free planar perovskite solar cells [J].
Liu, Xueping ;
Bu, Tongle ;
Li, Jing ;
He, Jiang ;
Li, Tianhui ;
Zhang, Jun ;
Li, Wangnan ;
Ku, Zhiliang ;
Peng, Yong ;
Huang, Fuzhi ;
Cheng, Yi-Bing ;
Zhong, Jie .
NANO ENERGY, 2018, 44 :34-42
[32]   Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells [J].
Minemoto, Takashi ;
Murata, Masashi .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (05)
[33]  
National Renewable Energy Laboratory, 2020, Best research: Cell efficiencies
[34]   Physical chemistry of semiconductor-liquid interfaces [J].
Nozik, AJ ;
Memming, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13061-13078
[35]   Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells [J].
Oh, Hyunchul ;
Krantz, Johannes ;
Litzov, Ivan ;
Stubhan, Tobias ;
Pinna, Luigi ;
Brabec, Christoph J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (08) :2194-2199
[36]   Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells [J].
Qin, Peng ;
Domanski, Anna L. ;
Chandiran, Aravind Kumar ;
Berger, Ruediger ;
Butt, Hans-Juergen ;
Dar, M. Ibrahim ;
Moehl, Thomas ;
Tetreault, Nicolas ;
Gao, Peng ;
Ahmad, Shahzada ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NANOSCALE, 2014, 6 (03) :1508-1514
[37]   A novel ball milling technique for room temperature processing of TiO2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules [J].
Singh, Mriganka ;
Chiang, Chien-Hung ;
Boopathi, Karunakara Moorthy ;
Hanmandlu, Chintam ;
Li, Gang ;
Wu, Chun-Guey ;
Lin, Hong-Cheu ;
Chu, Chih-Wei .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (16) :7114-7122
[38]   High resolution photoemission study on SnO2 gas sensors [J].
Sinner-Hettenbach, M ;
Barsan, N ;
Weimar, U ;
Weiss, T ;
von Schenck, H ;
Göthelid, M ;
Giovanelli, L ;
Le Lay, G .
THIN SOLID FILMS, 2001, 391 (02) :192-197
[39]   Anomalous Hysteresis in Perovskite Solar Cells [J].
Snaith, Henry J. ;
Abate, Antonio ;
Ball, James M. ;
Eperon, Giles E. ;
Leijtens, Tomas ;
Noel, Nakita K. ;
Stranks, Samuel D. ;
Wang, Jacob Tse-Wei ;
Wojciechowski, Konrad ;
Zhang, Wei .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (09) :1511-1515
[40]   Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. [J].
Son, Dae-Yong ;
Kim, Seul-Gi ;
Seo, Ja-Young ;
Lee, Seon-Hee ;
Shin, Hyunjung ;
Lee, Donghwa ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (04) :1358-1364