Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO2 and SnO2 Nanoparticles for High-Efficiency Stable Perovskite Solar Cells

被引:26
作者
Chiang, Chien-Hung [1 ,2 ]
Kan, Chun-Wei [1 ]
Wu, Chun-Guey [1 ,2 ]
机构
[1] Natl Cent Univ, Dept Chem, Chungli 32001, Taiwan
[2] Natl Cent Univ, Res Ctr New Generat Light Driven Photovolta Modul, Chungli 32001, Taiwan
关键词
perovskite; solar cell; electron transport; metal oxide nanocomposite; double layer; low temperature; PERFORMANCE; HYSTERESIS; PASSIVATION; EXTRACTION; STRATEGY;
D O I
10.1021/acsami.1c02105
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A simple, synergistic engineering of the conduction band (CB), conductivity, and interface of TiO2-based bilayered electron transport layers (ETLs) via scalable TiO2 and SnO2 nanoparticles processed at low temperature (<= 100 degrees C) for regular planar perovskite solar cells (PSCs) was developed. The bottom layer (Lt-TiO2:SnO2 nanocomposite film) was prepared by spin coating from the ethanol suspension of small ground TiO2 nanoparticles with big ground SnO2 nanoparticles as the additive. The top C-SnO2 layer (spin-coated from the concentrated commercial SnO2 nanoparticles (C-SnO2 NPs, 20 wt %, 7 nm in size suspended in H2O)) can be regarded as an interlayer between Lt-TiO2:SnO2 and perovskite (Psk) absorbers. Bilayered Lt-TiO2:SnO2/C-SnO2 ETLs are dense films with a cascade CB, good conductivity, facile electron extraction/transport ability, and a highly hydrophilic surface for depositing high-quality Psk films. Regular planar PSCs based on Lt-TiO2 : SnO2/C-SnO2 ETLs combined with a (FAI)(0.90)(PbI2)(0.94)(MABr)(0.10)(PbBr2)(0.10) absorber and a spiro-OMeTAD hole transporter achieved the highest power conversion efficiency of 22.04% with a negligible current hysteresis. The champion cell lost less than 3% of the initial efficiency under continuous room lighting (1000 lux) for 1000 h (lost 10% after 2184 h) without encapsulation under an inert atmosphere. Four related low-temperature-processed ETLs (Lt-TiO2/C-SnO2, Lt-C-SnO2, Lt-TiO2:SnO2, and Lt-TiO2) were fabricated using the same metal oxide nanoparticle suspensions and studied simultaneously to reveal the function of each metal oxide in the bilayered Lt-TiO2:SnO2/C-SnO2 ETLs. In the bottom Lt-TiO2:SnO2 layer, small TiO2 nanoparticles were needed for making a dense film, and highly conducting big SnO2 nanoparticles are used to increase the conductivity of ETLs and a handy electron transport path for reducing the charge accumulation and series resistance of the cell. A top C-SnO2 layer (regarded as an interlayer between Psk and Lt-TiO2:SnO2) was used to extract/transport electrons facilely, to form a bilayered ETL with a cascade CB, and to create a hydrophilic surface to deposit high-quality Psk films to enhance the photovoltaic performance of the PSCs. This study provides a blueprint for designing good-performance ETLs for high-efficiency, stable regular planar PSCs using various sized nanoparticles prepared in a very simple and low-cost way.
引用
收藏
页码:23606 / 23615
页数:10
相关论文
共 64 条
[11]   Cascade exciton-pumping engines with manipulated speed and efficiency in light-harvesting porous π-network films [J].
Gu, Cheng ;
Huang, Ning ;
Xu, Fei ;
Gao, Jia ;
Jiang, Donglin .
SCIENTIFIC REPORTS, 2015, 5
[12]   Multifunctional MgO Layer in Perovskite Solar Cells [J].
Guo, Xudong ;
Dong, Haopeng ;
Li, Wenzhe ;
Li, Nan ;
Wang, Liduo .
CHEMPHYSCHEM, 2015, 16 (08) :1727-1732
[13]   Low-Temperature and Hysteresis-Free Electron-Transporting Layers for Efficient, Regular, and Planar Structure Perovskite Solar Cells [J].
Hou, Yi ;
Quiroz, Cesar Omar Ramirez ;
Scheiner, Simon ;
Chen, Wei ;
Stubhan, Tobias ;
Hirsch, Andreas ;
Halik, Marcus ;
Brabec, Christoph J. .
ADVANCED ENERGY MATERIALS, 2015, 5 (20)
[14]   A Band-Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in High-Performance Perovskite Solar Cells [J].
Hou, Yu ;
Chen, Xiao ;
Yang, Shuang ;
Li, Chunzhong ;
Zhao, Huijun ;
Yang, Hua Gui .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (27)
[15]   Electron Transporting Bilayer of SnO2 and TiO2 Nanocolloid Enables Highly Efficient Planar Perovskite Solar Cells [J].
Hu, Manman ;
Zhang, Luozheng ;
She, Suyang ;
Wu, Jianchang ;
Zhou, Xianyong ;
Li, Xiangnan ;
Wang, Deng ;
Miao, Jun ;
Mi, Guojun ;
Chen, Hong ;
Tian, Yanqing ;
Xu, Baomin ;
Cheng, Chun .
SOLAR RRL, 2020, 4 (01)
[16]   Efficiency and Air-Stability Improvement of Flexible Inverted Polymer Solar Cells Using ZnO/Poly(ethylene glycol) Hybrids as Cathode Buffer Layers [J].
Hu, Ting ;
Li, Fan ;
Yuan, Kai ;
Chen, Yiwang .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (12) :5763-5770
[17]   Using a low temperature crystallization process to prepare anatase TiO2 buffer layers for air-stable inverted polymer solar cells [J].
Huang, Jen-Hsien ;
Wei, Hung-Yu ;
Huang, Kuan-Chieh ;
Chen, Cheng-Lun ;
Wang, Rui-Ren ;
Chen, Fang-Chung ;
Ho, Kuo-Chuan ;
Chu, Chih-Wei .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (05) :654-658
[18]   A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells [J].
Jeon, Nam Joong ;
Na, Hyejin ;
Jung, Eui Hyuk ;
Yang, Tae-Youl ;
Lee, Yong Guk ;
Kim, Geunjin ;
Shin, Hee-Won ;
Seok, Sang Il ;
Lee, Jaemin ;
Seo, Jangwon .
NATURE ENERGY, 2018, 3 (08) :682-+
[19]   SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells [J].
Jiang, Qi ;
Zhang, Xingwang ;
You, Jingbi .
SMALL, 2018, 14 (31)
[20]   Planar-Structure Perovskite Solar Cells with Efficiency beyond 21% [J].
Jiang, Qi ;
Chu, Zema ;
Wang, Pengyang ;
Yang, Xiaolei ;
Liu, Heng ;
Wang, Ye ;
Yin, Zhigang ;
Wu, Jinliang ;
Zhang, Xingwang ;
You, Jingbi .
ADVANCED MATERIALS, 2017, 29 (46)