A low power, VLSI object recognition processor using Sparse FIND feature for 60 fps HDTV resolution video

被引:2
作者
Matsukawa, Go [1 ]
Kodama, Taisuke [1 ]
Nishizumi, Yuri [1 ]
Kajihara, Koichi [1 ]
Nakanishi, Chikako [2 ]
Izumi, Shintaro [1 ]
Kawaguchi, Hiroshi [1 ]
Goto, Toshio [3 ]
Kato, Takeo [4 ]
Yoshimoto, Masahiko [1 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, Nada Ku, 4 Rokkodai, Kobe, Hyogo 6578501, Japan
[2] Osaka Inst Technol, 10-1 Wakamiya, Atsugi, Kanagawa 2430197, Japan
[3] Toyota Motor Co Ltd, Elect Adv Dev Dept, Toyota 4718571, Japan
[4] Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan
关键词
Sparse FIND; object recognition; HDTV; low-power; VLSI;
D O I
10.1587/elex.14.20170668
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a low-power object recognition processor VLSI for HDTV resolution video at 60 frames per second (fps) using an object recognition algorithm with Sparse FIND features. The VLSI processor features two-stage feature extraction processing by HOG and Sparse FIND, a highly parallel classification in the support vector machine (SVM), and a block-parallel processing for RAM access cycle reduction. Compared to the accuracy by the original Sparse FIND algorithm, the two-stage object detection demonstrates insignificant accuracy degradation. Using this architectural design, a 60 fps performance for object recognition of HDTV resolution video was attained at an operating frequency of 130 MHz. This 3.35 x 3.35 mm(2) chip, designed with 40 nm CMOS technology, contains 8.22 M gates and 5 Mb SRAM in the chip of 3.35 x 3.35 mm(2). The simulated power consumption at 133 MHz were 528 mW and 702 mW at the slow process condition (SS, 0.81 V, -40 degrees C) and typical process condition (TT, 0.9 V, 25 degrees C), respectively.
引用
收藏
页数:12
相关论文
共 10 条
[1]  
[Anonymous], 2009, LECT NOTES COMPUT SC, DOI DOI 10.1007/978-3-540-92957-4_4
[2]   Feature Interaction Descriptor for Pedestrian Detection [J].
Cao, Hui ;
Yamaguchi, Koichiro ;
Ohta, Mitsuhiko ;
Naito, Takashi ;
Ninomiya, Yoshiki .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (09) :2656-2659
[3]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[4]  
Dollar P., 2009, CVPR, DOI [10.1109/CVPR.2009.5206631, DOI 10.1109/CVPR.2009.5206631]
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]  
Kato T., 2017, IEEE T INT VEH UNPUB
[7]  
Kato T., 2013, FASTZERO
[8]  
Liu W., 2016, EUR C COMP VIS
[9]  
Suleiman A., 2016, IEEE S VLSI CIRC, P184, DOI [10.1109/VLSIC.2016.7573528, DOI 10.1109/VLSIC.2016.7573528]
[10]  
Takagi K, 2013, INT CONF ACOUST SPEE, P2533, DOI 10.1109/ICASSP.2013.6638112