Disks surviving the radiation pressure of radio pulsars

被引:37
作者
Eksi, KY [1 ]
Alpar, MA [1 ]
机构
[1] Sabanci Univ, TR-34956 Istanbul, Turkey
关键词
accretion; accretion disks; stars : individual (SAX J1808.4-3658; Aquila X-1); stars : neutron; X-rays : binaries;
D O I
10.1086/425959
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The radiation pressure of a radio pulsar does not necessarily disrupt a surrounding disk. The position of the inner radius of a thin disk around a neutron star, determined by the balance of stresses, can be estimated by comparing the electromagnetic energy density generated by the neutron star as a rotating magnetic dipole in vacuum with the kinetic energy density of the disk. Inside the light cylinder, the near zone electromagnetic field is essentially the dipole magnetic field, and the inner radius is the conventional Alfven radius. Far outside the light cylinder, in the radiation zone, \E\ = \B\, and the electromagnetic energy density is (S) / c proportional to 1/ r(2), where S is the Poynting vector. Shvartsman argued that a stable equilibrium cannot be found in the radiative zone because the electromagnetic energy density dominates over the kinetic energy density, with the relative strength of the electromagnetic stresses increasing with radius. In order to check whether this is also true near the light cylinder, we employ the Deutsch global electromagnetic field solutions for rotating oblique magnetic dipoles. Near the light cylinder the electromagnetic energy density increases steeply enough with decreasing r to balance the kinetic energy density at a stable equilibrium. The transition from the near zone to the radiation zone is broad. The radiation pressure of the pulsar cannot disrupt the disk for values of the inner radius up to about twice the light cylinder radius if the rotation axis and the magnetic axis are orthogonal. This allowed range beyond the light cylinder extends much farther for small inclination angles. The mass flow rate in quiescent phases of accretion- driven millisecond pulsars can occasionally drop to values low enough that the inner radius of the disk goes beyond the light cylinder. The possibilities considered here may be relevant for the evolution of spun- up X- ray binaries into millisecond pulsars, for some transients, and for the evolution of young neutron stars if there is a fallback disk surrounding the neutron star.
引用
收藏
页码:390 / 397
页数:8
相关论文
共 48 条
[1]   On young neutron stars as propellers and accretors with conventional magnetic fields [J].
Alpar, MA .
ASTROPHYSICAL JOURNAL, 2001, 554 (02) :1245-1254
[2]   A NEW CLASS OF RADIO PULSARS [J].
ALPAR, MA ;
CHENG, AF ;
RUDERMAN, MA ;
SHAHAM, J .
NATURE, 1982, 300 (5894) :728-730
[3]  
Alpar MA, 2001, ASTROPHYS J, V557, pL61, DOI 10.1086/323140
[4]  
BELINSKY V, 1994, ASTRON ASTROPHYS, V283, P1018
[5]   Pulsars with jets may harbor dynamically important disks [J].
Blackman, EG ;
Perna, R .
ASTROPHYSICAL JOURNAL, 2004, 601 (01) :L71-L74
[6]   The optical counterpart to SAX J1808.4-3658 in quiescence: Evidence of an active radio pulsar? [J].
Burderi, L ;
Di Salvo, T ;
D'Antona, F ;
Robba, NR ;
Testa, V .
ASTRONOMY & ASTROPHYSICS, 2003, 404 (03) :L43-L46
[7]   Indirect evidence of an active radio pulsar in the quiescent state of the transient millisecond pulsar SAX J1808.4-3658 [J].
Campana, S ;
D'Avanzo, P ;
Casares, J ;
Covino, S ;
Israel, G ;
Marconi, G ;
Hynes, R ;
Charles, P ;
Stella, L .
ASTROPHYSICAL JOURNAL, 2004, 614 (01) :L49-L52
[8]   Aquila X-1 from outburst to quiescence: The onset of the propeller effect and signs of a turned-on rotation-powered pulsar [J].
Campana, S ;
Stella, L ;
Mereghetti, S ;
Colpi, M ;
Tavani, M ;
Ricci, D ;
Dal Fiume, D ;
Belloni, T .
ASTROPHYSICAL JOURNAL, 1998, 499 (01) :L65-L68
[9]   An XMM-Newton study of the 401 Hz accreting pulsar SAX J1808.4+3658 in quiescence [J].
Campana, S ;
Stella, L ;
Gastaldello, F ;
Mereghetti, S ;
Colpi, M ;
Israel, GL ;
Burderi, L ;
Di Salvo, T ;
Robba, RN .
ASTROPHYSICAL JOURNAL, 2002, 575 (01) :L15-L19
[10]   An accretion model for anomalous X-ray pulsars [J].
Chatterjee, P ;
Hernquist, L ;
Narayan, R .
ASTROPHYSICAL JOURNAL, 2000, 534 (01) :373-379