Infection with the human microbial pathogen Helicobacter pylori is assumed to lead to invasive gastric cancer. We find that H. pylori activates the hepatocyte growth factor/scatter factor receptor c-Met, which is involved in invasive growth of tumor cells. The H. pylori effector protein CagA intracellularly targets the c-Met receptor and promotes cellular processes leading to a forceful motogenic response. CagA could represent a bacterial adaptor protein that associates with phospholipase Cgamma but not Grb2-associated binder 1 or growth factor receptor-bound protein 2. The H. pylori-induced motogenic response is suppressed and blocked by the inhibition of PLCgamma and of MAPK, respectively. Thus, upon translocation, CagA modulates cellular functions by deregulating c-Met receptor signaling. The activation of the motogenic response in H. pylori-infected epithelial cells suggests that CagA could be involved in tumor progression.