Tropical Cyclone prediction based on multi-model fusion across Indian coastal region

被引:6
|
作者
Varalakshmi, P. [1 ]
Vasumathi, N. [1 ]
Venkatesan, R. [2 ]
机构
[1] Anna Univ, Dept Comp Technol, MIT Campus, Chennai, Tamil Nadu, India
[2] Natl Inst Ocean Technol, Ocean Observat Syst, Chennai, Tamil Nadu, India
关键词
CNN; Deep learning; Genetic algorithm; Machine learning; Modified C4; 5; Multi-model fusion; Tropical cyclone; INTENSITY ESTIMATION; ATLANTIC;
D O I
10.1016/j.pocean.2021.102557
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Tropical cyclone prediction is essential to limit death toll and damage caused by them. In this paper, a model has been formulated to classify the cyclone as no cyclone, minimal, moderate, extensive, extreme and catastrophic in view of attributes such as Wind Speed(10 m), Rainfall, Wind Direction(10 m), Sea Surface Temperature(2 m), Sea Level Pressure(2 m) and Relative humidity(2 m). The models have been trained using the meteorological data from MERRA-2 Web service which provides time-series data with spatial resolution of approximately 50 km. The cyclone data is taken from RSMC ? New Delhi for Tropical cyclone disturbances over Indian Oceans. Initially, the models are trained using deep learning networks like MLP, LSTM, GRU, RNN, BI-LSTM and CNN. Since CNN gives better results, the CNN model is chosen for further analysis. The hyper parameters of the CNN model are optimized using genetic algorithm. The values drawn from genetic algorithm appear to be promising than the values which were chosen manually in random. The model is then modified by removing the fully connected layer which operates as a classifier in CNN network. The conventional machine learning classifiers like ? Decision Tree, K-Nearest neighbor, logistic regression, Naive Bayes, Random Forest, SVM and XGBoost are used as a classifier in the place of a fully connected layer in CNN. Further to increase the prediction accuracy, C4.5 Decision tree algorithm is modified to be used as a classifier in CNN. Classification is performed by considering the Spatio-temporal data of various important cities in India. The model was tested to classify the category for 5 different cyclones and was also compared with Saffir?Simpson?s scale to validate the correctness of the model. The proposed model gives a better performance compared to the conventional machine learning and deep learning classifiers in terms of time complexity, accuracy, precision and recall and this can supplement the cyclone prediction process of current NWP models. Tropical cyclone prediction is essential to limit death toll and damage caused by them. In this paper, a model has been formulated to classify the cyclone as no cyclone, minimal, moderate, extensive, extreme and catastrophic in view of attributes such as Wind Speed(10 m), Rainfall, Wind Direction(10 m), Sea Surface Temperature(2 m), Sea Level Pressure(2 m) and Relative humidity(2 m). The models have been trained using the meteorological data from MERRA-2 Web service which provides time-series data with spatial resolution of approximately 50 km. The cyclone data is taken from RSMC ? New Delhi for Tropical cyclone disturbances over Indian Oceans. Initially, the models are trained using deep learning networks like MLP, LSTM, GRU, RNN, BI-LSTM and CNN. Since CNN gives better results, the CNN model is chosen for further analysis. The hyper parameters of the CNN model are optimized using genetic algorithm. The values drawn from genetic algorithm appear to be promising than the values which were chosen manually in random. The model is then modified by removing the fully connected layer which operates as a classifier in CNN network. The conventional machine learning classifiers like ? Decision Tree, K-Nearest neighbor, logistic regression, Naive Bayes, Random Forest, SVM and XGBoost are used as a classifier in the place of a fully connected layer in CNN. Further to increase the prediction accuracy, C4.5 Decision tree algorithm is modified to be used as a classifier in CNN. Classification is performed by considering the Spatio-temporal data of various important cities in India. The model was tested to classify the category for 5 different cyclones and was also compared with Saffir?Simpson?s scale to validate the correctness of the model. The proposed model gives a better performance compared to the conventional machine learning and deep learning classifiers in terms of time complexity, accuracy, precision and recall and this can supplement the cyclone prediction process of current NWP models.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Prediction of loan default based on multi-model fusion
    Li, Xingyun
    Ergu, Daji
    Zhang, Di
    Qiu, Dafeng
    Cai, Ying
    Ma, Bo
    8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 757 - 764
  • [2] Atmospheric Visibility Prediction Based on Multi-Model Fusion
    Yan Shiyang
    Zheng Yu
    Chen Yixuan
    Li Baoren
    2021 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2021, 12076
  • [3] Research on Photovoltaic Power Prediction Based on Multi-model Fusion
    Chen, Jiaqi
    Gao, Qiang
    Ji, Yuehui
    Xu, Zhao
    Liu, Junjie
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON NEW ENERGY AND ELECTRICAL TECHNOLOGY, ISNEET 2023, 2024, 1255 : 59 - 67
  • [4] A MULTI-MODEL CONSENSUS FORECAST TECHNIQUE FOR TROPICAL CYCLONE INTENSITY BASED ON MODEL OUTPUT CALIBRATION
    HUI YU
    GUOMIN CHEN
    RIJIN WAN
    Tropical Cyclone Research and Review, 2015, (Z1) : 132 - 142
  • [5] A MULTI-MODEL CONSENSUS FORECAST TECHNIQUE FOR TROPICAL CYCLONE INTENSITY BASED ON MODEL OUTPUT CALIBRATION
    Yu, Hui
    Chen, Guomin
    Wan, Rijin
    TROPICAL CYCLONE RESEARCH AND REVIEW, 2015, 4 (3-4) : 132 - 142
  • [6] STUDY OF THE MODIFICATION OF MULTI-MODEL ENSEMBLE SCHEMES FOR TROPICAL CYCLONE FORECASTS
    张涵斌
    智协飞
    陈静
    王亚男
    王轶
    JournalofTropicalMeteorology, 2015, 21 (04) : 389 - 399
  • [7] STUDY OF THE MODIFICATION OF MULTI-MODEL ENSEMBLE SCHEMES FOR TROPICAL CYCLONE FORECASTS
    Zhang Han-bin
    Zhi Xie-fei
    Chen Jing
    Wang Ya-nan
    Wang Yi
    JOURNAL OF TROPICAL METEOROLOGY, 2015, 21 (04) : 389 - 399
  • [8] Temperature Prediction for Stored Grain: A Multi-model Fusion Approach Based on Machine Learning
    Chen, Donghao
    Liu, Binkun
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 661 - 665
  • [9] MULTI-MODEL FUSION PHOTOVOLTAIC POWER GENERATION PREDICTION METHOD BASED ON REINFORCEMENT LEARNING
    Wang J.
    Fu J.
    Chen B.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 382 - 388
  • [10] Prediction of glass-forming ability based on multi-model fusion
    Zeng, Yangchuan
    Tian, Zean
    Zheng, Quan
    Jiang, Mingxiang
    Peng, Yikun
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2024, 623