Fabrication of Lensed Optical Fibers for Biosensing Probes Using CO2 and Femtosecond Lasers

被引:5
作者
Lim, Ki-Dong [1 ,2 ,4 ]
Choi, Hun-Kook [2 ]
Sohn, Ik-Bu [2 ,3 ]
Lee, Byeong-Ha [3 ]
Kim, Jin-Tae [1 ]
机构
[1] Chosun Univ, Dept Photon Engn, Gwangju 61452, South Korea
[2] Gwangju Inst Sci & Technol GIST, Adv Photon Res Inst APRI, Gwangju 61005, South Korea
[3] Gwangju Inst Sci & Technol GIST, Sch Elect Engn & Comp Sci, Gwangju 61005, South Korea
[4] Korea Photon Technol Inst KOPTI, Gwangju 61007, South Korea
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 09期
关键词
CO2; laser; femtosecond laser; lensed fiber; fiber cleaving; COHERENCE TOMOGRAPHY; DESIGN; BEAMS;
D O I
10.3390/app11093738
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We propose a new method for precisely fabricating a lensed fiber with a desired focal length by first cleaving a coreless silica fiber using an ultrafast femtosecond laser without thermal effects and subsequently shaping the radius of curvature at the optical-fiber end using a CO2 laser. The precisely cleaved segment of the coreless silica fiber obtained with the femtosecond laser is attached to a long single-mode fiber. The beam-exposure time and laser power of the CO2 laser are adjusted to melt the coreless-fiber end to yield a uniform, consistent, and precise radius of curvature, thereby realizing a lensed optical fiber. The precision of the radius of curvature in this case is greater than those obtained with the conventional arc discharge method with thermal treatment requiring fairly complex processes and yielding relatively low fabrication accuracy. In our study, we observe a difference between the measured and calculated focal lengths of the fabricated lens, possibly because the exact value of the mode field diameter is uncertain. On the other hand, the beam size measured using the knife-edge method matches closely with the theoretical size. Our findings confirm the feasibility of fabricating lensed optical fibers for fiber-based biosensing using CO2 and femtosecond lasers.
引用
收藏
页数:11
相关论文
共 21 条
[1]   MODE FIELD DIAMETER MEASUREMENTS IN SINGLE-MODE OPTICAL FIBERS [J].
ARTIGLIA, M ;
COPPA, G ;
DIVITA, P ;
POTENZA, M ;
SHARMA, A .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1989, 7 (08) :1139-1152
[2]   High precision 9.6 μm CO2 laser end-face processing of optical fibres [J].
Boyd, Keiron ;
Rees, Simon ;
Simakov, Nikita ;
Daniel, Jae M. O. ;
Swain, Robert ;
Mies, Eric ;
Hemming, Alexander ;
Clarkson, W. Andrew ;
Haub, John .
OPTICS EXPRESS, 2015, 23 (11) :15065-15071
[3]   ANALYSIS AND EVALUATION OF GRADED-INDEX FIBER-LENSES [J].
EMKEY, WL ;
JACK, CA .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1987, 5 (09) :1156-1164
[4]   Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy [J].
Fujimoto, JG ;
Pitris, C ;
Boppart, SA ;
Brezinski, ME .
NEOPLASIA, 2000, 2 (1-2) :9-25
[5]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181
[6]   Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension [J].
Kim, KR ;
Chang, SL ;
Oh, K .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (08) :1100-1102
[7]   COUPLING CHARACTERISTICS BETWEEN SINGLE-MODE FIBER AND SQUARE LAW MEDIUM [J].
KISHIMOTO, R ;
KOYAMA, M .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1982, 30 (06) :882-893
[8]   LASER BEAMS AND RESONATORS [J].
KOGELNIK, H ;
LI, T .
APPLIED OPTICS, 1966, 5 (10) :1550-+
[9]   ON PROPAGATION OF GAUSSIAN BEAMS OF LIGHT THROUGH LENSLIKE MEDIA INCLUDING THOSE WITH A LOSS OR GAIN VARIATION [J].
KOGELNIK, H .
APPLIED OPTICS, 1965, 4 (12) :1562-&
[10]   Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements [J].
Lee, Byeong Ha ;
Min, Eun Jung ;
Kim, Young Ho .
OPTICAL FIBER TECHNOLOGY, 2013, 19 (06) :729-740