Low-cost racking for solar photovoltaic systems with renewable tensegrity structures

被引:12
作者
Arefeen, Shamsul [1 ]
Dallas, Tim [1 ]
机构
[1] Texas Tech Univ, Dept Elect & Comp Engn, Lubbock, TX 79409 USA
关键词
Algorithm; Biomimicry; Bamboo; Solar Photovoltaic; System Advisor Model; Tensegrity; MECHANICAL-PROPERTIES; BAMBOO; BENEFITS;
D O I
10.1016/j.solener.2021.06.020
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Rapid decline in the cost of solar photovoltaic (PV) modules and associated electronics has elevated the significance of structural balance of systems (BOS) in the system cost composition. In this study tensegrity, a bioinspired structure made of bars as compression members and strings as tensile members, is evaluated as an economical racking solution for solar photovoltaic arrays. For the first time, the electrical aspects of solar photovoltaic system design have been unified with the structural aspects of tensegrity through a novel algorithm. The end-to-end system design framework is validated through modelling of a practical system with System Advisor Model (SAM), a standard design tool by National Renewable Energy Lab (NREL), in congruence with the minimal mass planar bridge tensegrity model implemented in MATLAB. This algorithmic demonstration establishes tensegrity as a technically viable system design approach and assesses the significant reduction in racking material weight leading to maximum cost savings up to 77%. The technical compatibility, ease of installation, logistic efficiency and economic benefits of tensegrity-enabled racking would accelerate wide-scale adoption of solar energy across the world. It is also conducive to high-impact applications of solar energy such as water canal covering and shaded agriculture. Additionally, tensegrity configuration provisions the use of locally grown timbers like bamboo as the compression member which benefits developing regions through local sourcing, fast installation, carbon capture and farming incentive. Tensegrity also unlocks the research avenue for adding modularity and portability to solar PV systems leveraging its controllable dynamic properties.
引用
收藏
页码:798 / 807
页数:10
相关论文
共 37 条
[21]  
Mat Web, 1996, MAT PROP DAT
[22]  
Matter of Trust, 2019, BAMB CARB SEQ
[23]   Energy and water co-benefits from covering canals with solar panels [J].
McKuin, Brandi ;
Zumkehr, Andrew ;
Ta, Jenny ;
Bales, Roger ;
Viers, Joshua H. ;
Pathak, Tapan ;
Campbell, J. Elliott .
NATURE SUSTAINABILITY, 2021, 4 (07) :609-617
[24]  
Metals Depot, 2018, STEEL PROD
[25]  
Nagase K, 2014, J Int Assoc Shell Spat Struct, V55, P37
[26]  
Oberlander A, 1914, THESIS
[27]  
Quartz, 2019, QUARTZ
[28]  
Scrap Metals, 2018, PRIC SCRAP MET
[29]   Engineered bamboo: state of the art [J].
Sharma, Bhavna ;
Gatoo, Ana ;
Bock, Maximilian ;
Mulligan, Helen ;
Ramage, Michael .
PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2015, 168 (02) :57-67
[30]  
Skelton R.E., 2009, Tensegrity Systems, V1, DOI [10.1007/978-0-387-74242-7, DOI 10.1007/978-0-387-74242-7]