In-situ catalytic growth carbon nanotubes from metal organic frameworks for high performance lithium-sulfur batteries

被引:46
作者
Zhao, Jinxing [1 ]
Liu, Cui [1 ]
Deng, Heming [2 ]
Tang, Shun [1 ]
Liu, Chang [1 ]
Chen, Shengrui [1 ]
Guo, Jinglong [1 ]
Lan, Qian [1 ]
Li, Yuxiao [1 ]
Liu, Yan [1 ]
Ye, Miao [1 ]
Liu, Honghao [1 ]
Liang, Jiyuan [1 ]
Cao, Yuan-Cheng [1 ]
机构
[1] Jianghan Univ, Sch Chem & Environm Engn, Minist Educ, Key Lab Optoelect Chem Mat & Devices, Wuhan 430056, Hubei, Peoples R China
[2] State Grid Elect Power Res Inst, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon nanotubes; Metal organic frameworks; Rate capability; Cycle stability; Lithium-sulfur battery; LI-S BATTERIES; POROUS CARBON; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL; GRAPHENE OXIDE; NITROGEN; COMPOSITES; NANOSHEETS; STABILITY;
D O I
10.1016/j.mtener.2018.03.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The highly uniformed hybrid carbon material has been prepared by in-situ growth carbon nanotubes (CNTs) from metal organic frameworks, with the cobalt species as the catalyst for CNTs growth and dicyandiamide (DICY) as a sacrificial agent for the formation of graphitic carbon. The CNTs with extraordinary conductivity supply more electron transport to the cathode and make much more sense in enhancing the rate performance of the sulfur cathode. In the matrix, cobalt nanoparticles and hetero-atom nitrogen can help in immobilizing sulfur species, leading to the improvement of polysulfide shutting. Moreover, the increased specific surface area and mesoporous channel enhance the sulfur loading and facilitate electrolyte diffusion. On integrating these fascinating benefits into one electrode material, as a result, the hybrid composite (CNT@CoeNeC/S) cathode presents a high initial capacity of 1316.1 mAh/g at the current rate of 0.1C. Even at high current rate of 5C, a decent capacity of 620.7 mAh/g can still be achieved. The capacity of hybrids materials can be maintained at 970 mAh/g after 500 cycles at 0.2C, and a capacity retention of 79.8%, revealing it great potential for energy storage application. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:134 / 142
页数:9
相关论文
共 48 条
[1]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[2]   Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries [J].
Chen, Tao ;
Ma, Lianbo ;
Cheng, Baorui ;
Chen, Renpeng ;
Hu, Yi ;
Zhu, Guoyin ;
Wang, Yanrong ;
Liang, Jia ;
Tie, Zuoxiu ;
Liu, Jie ;
Jin, Zhong .
NANO ENERGY, 2017, 38 :239-248
[3]   Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries [J].
Chen, Tao ;
Cheng, Baorui ;
Zhu, Guoyin ;
Chen, Renpeng ;
Hu, Yi ;
Ma, Lianbo ;
Lv, Hongling ;
Wang, Yanrong ;
Liang, Jia ;
Tie, Zuoxiu ;
Jin, Zhong ;
Liu, Jie .
NANO LETTERS, 2017, 17 (01) :437-444
[4]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[5]   A Polyethylene Glycol-Supported Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (43) :7352-7357
[6]   Eggshell Membrane-Derived Polysulfide Absorbents for Highly Stable and Reversible Lithium-Sulfur Cells [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (10) :2248-2252
[7]   Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (09) :1360-1365
[8]   Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube-Graphene Hybrid Architectures for Lithium-Sulfur Batteries [J].
Ding, Yuan-Li ;
Kopold, Peter ;
Hahn, Kersten ;
van Aken, Peter A. ;
Maier, Joachim ;
Yu, Yan .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (07) :1112-1119
[9]   Highly dispersed sulfur in multi-walled carbon nanotubes for lithium/sulfur battery [J].
Geng, Xiuyu ;
Rao, Mumin ;
Li, Xiaoping ;
Li, Weishan .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (04) :987-992
[10]   A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li-S batteries [J].
Gu, Xingxing ;
Tong, Chuan-jia ;
Lai, Chao ;
Qiu, Jingxia ;
Huang, Xiaoxiao ;
Yang, Wenlong ;
Wen, Bo ;
Liu, Li-min ;
Hou, Yanglong ;
Zhang, Shanqing .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (32) :16670-16678