Inherently Area-Selective Atomic Layer Deposition of Manganese Oxide through Electronegativity-Induced Adsorption

被引:18
作者
Li, Yi-Cheng [1 ]
Cao, Kun [1 ]
Lan, Yu-Xiao [2 ]
Zhang, Jing-Ming [2 ]
Gong, Miao [1 ]
Wen, Yan-Wei [2 ]
Bin Shan [2 ]
Chen, Rong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, 1037 Luoyu Rd, Wuhan 430063, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, 1037 Luoyu Rd, Wuhan 430063, Peoples R China
基金
中国国家自然科学基金;
关键词
area selective; atomic layer deposition; manganese oxide; THIN-FILMS; GROWTH; NANOPARTICLES; PASSIVATION; BOND;
D O I
10.3390/molecules26103056
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Manganese oxide (MnOx) shows great potential in the areas of nano-electronics, magnetic devices and so on. Since the characteristics of precise thickness control at the atomic level and self-align lateral patterning, area-selective deposition (ASD) of the MnOx films can be used in some key steps of nanomanufacturing. In this work, MnOx films are deposited on Pt, Cu and SiO2 substrates using Mn(EtCp)(2) and H2O over a temperature range of 80-215 degrees C. Inherently area-selective atomic layer deposition (ALD) of MnOx is successfully achieved on metal/SiO2 patterns. The selectivity improves with increasing deposition temperature within the ALD window. Moreover, it is demonstrated that with the decrease of electronegativity differences between M (M = Si, Cu and Pt) and O, the chemisorption energy barrier decreases, which affects the initial nucleation rate. The inherent ASD aroused by the electronegativity differences shows a possible method for further development and prediction of ASD processes.
引用
收藏
页数:11
相关论文
共 42 条
[1]   Progress in Powder Coating Technology Using Atomic Layer Deposition [J].
Adhikari, Sangeeta ;
Selvaraj, Seenivasan ;
Kim, Do-Heyoung .
ADVANCED MATERIALS INTERFACES, 2018, 5 (16)
[2]   Area-Selective Atomic Layer Deposition Assisted by Self-Assembled Monolayers: A Comparison of Cu, Co, W, and Ru [J].
Bobb-Semple, Dara ;
Nardi, Katie Lynn ;
Draeger, Nerissa ;
Hausmann, Dennis M. ;
Bent, Stacey F. .
CHEMISTRY OF MATERIALS, 2019, 31 (05) :1635-1645
[3]   Atomic layer deposition of MnO using Bis(ethylcyclopentadienyl) manganese and H2O [J].
Burton, B. B. ;
Fabreguette, F. H. ;
George, S. M. .
THIN SOLID FILMS, 2009, 517 (19) :5658-5665
[4]   Inherently Selective Atomic Layer Deposition and Applications [J].
Cao, Kun ;
Cai, Jiaming ;
Chen, Rong .
CHEMISTRY OF MATERIALS, 2020, 32 (06) :2195-2207
[5]  
Chang P., P IEEE INT INT TECHN, P315
[6]   Atomic level deposition to extend Moore's law and beyond [J].
Chen, Rong ;
Li, Yi-Cheng ;
Cai, Jia-Ming ;
Cao, Kun ;
Lee, Han-Bo-Ram .
INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2020, 2 (02)
[7]   Porous Manganese Oxide Networks as High-Capacity and High-Rate Anodes for Lithium-Ion Batteries [J].
Choi, Jaeho ;
Byun, Woo Jin ;
Kang, DongHwan ;
Lee, Jung Kyoo .
ENERGIES, 2021, 14 (05)
[8]   Enabling Large-Area Selective Deposition on Metal-Dielectric Patterns using Polymer Brush Deactivation [J].
Cummins, Cian ;
Weingaertner, Tobias ;
Morris, Michael A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (26) :14698-14705
[9]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131
[10]   Area-Selective Deposition of Ruthenium by Area-Dependent Surface Diffusion [J].
Grillo, Fabio ;
Soethoudt, Job ;
Marques, Esteban A. ;
de Martin, Lilian ;
Van Dongen, Kaat ;
van Ommen, J. Ruud ;
Delabie, Annelies .
CHEMISTRY OF MATERIALS, 2020, 32 (22) :9560-9572