Large Discrete Resistance Jump at Grain Boundary in Copper Nanowire

被引:120
作者
Kim, Tae-Hwan [1 ]
Zhang, X. -G. [1 ]
Nicholson, Don M. [1 ]
Evans, Boyd M. [1 ]
Kulkarni, Nagraj S. [2 ]
Radhakrishnan, B. [1 ]
Kenik, Edward A. [1 ]
Li, An-Ping [1 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Knoxville, TN 37996 USA
关键词
Grain boundary; resistance; copper; interconnect; four-probe measurement; scanning tunneling microscope; ELECTRICAL-RESISTIVITY; METALLIC-FILMS; CONDUCTIVITY; INTERCONNECTS; TRANSMISSION; MULTILAYERS; REFLECTION; DIMENSIONS; TRANSPORT; MODEL;
D O I
10.1021/nl101734h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Copper is the current interconnect metal of choice in integrated circuits. As interconnect dimensions decrease, the resistivity of copper increases dramatically because or electron scattering from surfaces, impurities, and grain boundaries (GBs) and threatens to stymie continued device scaling. Lacking direct measurements of individual scattering sources, understanding of the relative importance of these scattering mechanisms has largely relied on semiempirical modeling. Here we present the first ever attempt to measure and calculate individual GB resistances in copper nanowires with a one-to-one correspondence to the GB structure. Large resistance jumps are directly measured at the random GBs with a value far greater than at coincidence GBs and first-principles calculations. The high resistivity of the random GB appears to be intrinsic, arising from the scaling of electron mean free path with the size of the lattice relaxation region. The striking impact of random GB scattering adds vital information for understanding nanoscale conductors.
引用
收藏
页码:3096 / 3100
页数:5
相关论文
共 26 条
[1]   ToF-SIMS imaging of Cl at Cu grain boundaries in interconnects for microelectronics [J].
Barnes, J. P. ;
Carreau, V. ;
Maitrejean, S. .
APPLIED SURFACE SCIENCE, 2008, 255 (04) :1564-1568
[2]   STRUCTURE OF HIGH-ANGLE GRAIN BOUNDARIES [J].
BRANDON, DG .
ACTA METALLURGICA, 1966, 14 (11) :1479-&
[3]   DISLOCATION MODEL OF GRAIN-BOUNDARY ELECTRICAL-RESISTIVITY [J].
BROWN, RA .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1977, 7 (08) :1477-1488
[4]   Semiclassical theory of spin-dependent transport magnetic multilayers [J].
Butler, WH ;
Zhang, XG ;
MacLaren, JM .
JOURNAL OF SUPERCONDUCTIVITY, 2000, 13 (02) :221-238
[5]   The conductivity of thin metallic films according to the electron theory of metals [J].
Fuchs, K .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1938, 34 :100-108
[6]   Electronic Transport on the Nanoscale: Ballistic Transmission and Ohm's Law [J].
Homoth, J. ;
Wenderoth, M. ;
Druga, T. ;
Winking, L. ;
Ulbrich, R. G. ;
Bobisch, C. A. ;
Weyers, B. ;
Bannani, A. ;
Zubkov, E. ;
Bernhart, A. M. ;
Kaspers, M. R. ;
Moeller, R. .
NANO LETTERS, 2009, 9 (04) :1588-1592
[7]   Surface and size effects on the electrical properties of Cu nanowires [J].
Huang, Qiaojian ;
Lilley, Carmen M. ;
Bode, Matthias ;
Divan, Ralu .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)
[8]   Size-Dependent Resistivity in Nanoscale Interconnects [J].
Josell, Daniel ;
Brongersma, Sywert H. ;
Tokei, Zsolt .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2009, 39 :231-254
[9]   Resistivity of thin Cu films with surface roughness [J].
Ke, Youqi ;
Zahid, Ferdows ;
Timoshevskii, V. ;
Xia, Ke ;
Gall, D. ;
Guo, Hong .
PHYSICAL REVIEW B, 2009, 79 (15)
[10]   A cryogenic Quadraprobe scanning tunneling microscope system with fabrication capability for nanotransport research [J].
Kim, Tae-Hwan ;
Wang, Zhouhang ;
Wendelken, John F. ;
Weitering, Hanno H. ;
Li, Wenzhi ;
Li, An-Ping .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (12)