On L 1-estimates of derivatives of univalent rational functions

被引:5
作者
Baranov, Anton D. [1 ,2 ]
Fedorovskiy, Konstantin Yu. [1 ,3 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
[2] Natl Res Univ, Higher Sch Econ, St Petersburg, Russia
[3] Bauman Moscow State Tech Univ, Moscow, Russia
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2017年 / 132卷
基金
俄罗斯基础研究基金会;
关键词
INTEGRAL MEANS SPECTRUM; UNIFORM APPROXIMATION;
D O I
10.1007/s11854-017-0010-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the growth of the quantity a <<(T)|R'(z)|dm(z) for rational functions R of degree n which are bounded and univalent in the unit disk and prove that this quantity can grow like n (gamma) , gamma > 0, as n -> a. Some applications of this result to problems of regularity of boundaries of Nevanlinna domains are considered. We also discuss a related result of Dolzhenko, which applies to general (non-univalent) rational functions.
引用
收藏
页码:63 / 80
页数:18
相关论文
共 29 条
[1]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[2]   Boundary regularity of Nevanlinna domains and univalent functions in model subspaces [J].
Baranov, A. D. ;
Fedorovskiy, K. Yu. .
SBORNIK MATHEMATICS, 2011, 202 (12) :1723-1740
[3]   Boundary properties of Green functions in the plane [J].
Baranov, Anton ;
Hedenmalm, Hakan .
DUKE MATHEMATICAL JOURNAL, 2008, 145 (01) :1-24
[4]   Harmonic measure on fractal sets [J].
Beliaev, D ;
Smirnov, S .
European Congress of Mathematics, 2005, :41-59
[5]   ON COEFFICIENT PROBLEMS FOR UNIVALENT-FUNCTIONS AND CONFORMAL DIMENSION [J].
CARLESON, L ;
JONES, PW .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (02) :169-206
[6]   MERGELYANS APPROXIMATION THEOREM FOR RATIONAL MODULES [J].
CARMONA, JJ .
JOURNAL OF APPROXIMATION THEORY, 1985, 44 (02) :113-126
[7]   On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions [J].
Carmona, JJ ;
Paramonov, PV ;
Fedorovskii, KY .
SBORNIK MATHEMATICS, 2002, 193 (9-10) :1469-1492
[8]  
Davis P. J., 1974, The Schwarz Function and its Applications
[9]  
Dolzhenko E. P., 1978, Anal. Math., V4, P247
[10]  
Duren P., 1970, THEORY SPACES