A Optimization Approach for Consensus in Multi-agent Systems

被引:0
作者
dos Santos Junior, Carlos R. P. [1 ]
Carvalho, Jose Reginaldo H. [1 ]
Savino, Heitor J. [2 ]
机构
[1] Univ Fed Amazonas, Inst Comp, Manaus, Amazonas, Brazil
[2] Univ Fed Alagoas, Inst Comp, Maceio, Brazil
来源
AGENTS AND MULTI-AGENT SYSTEMS: TECHNOLOGIES AND APPLICATIONS 2019 | 2020年 / 148卷
基金
巴西圣保罗研究基金会;
关键词
Consensus; Multi-agent systems; Nelder-Mead optimization; COORDINATION;
D O I
10.1007/978-981-13-8679-4_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents a method based on the application of optimization theory to minimize time for consensus in multi-agent systems. More specifically, the Nelder-Mead algorithm, modified for constrained problems, is utilized to compute an optimum matrix gain that minimizes time in an objective function related to consensus time. The paper presents the problem formulation, simulations, and results that prove the efficiency of optimization methods for this class of application.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 26 条
[1]  
[Anonymous], 2000, INTRO GRAPH THEORY
[2]  
Azinheira J. R., 2015, IFAC - Papers Online, V48, P69, DOI 10.1016/j.ifacol.2015.12.012
[3]  
Bazaraa Bazaraa M.S. M.S., NONLINEAR PROGRAMMIN
[4]   A coordination architecture for spacecraft formation control [J].
Beard, RW ;
Lawton, J ;
Hadaegh, FY .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2001, 9 (06) :777-790
[5]   A self-optimizing mobile network: Auto-tuning the network with firefly-synchronized agents [J].
Bojic, Iva ;
Podobnik, Vedran ;
Ljubi, Igor ;
Jezic, Gordan ;
Kusek, Mario .
INFORMATION SCIENCES, 2012, 182 (01) :77-92
[6]  
Carvalho J.R.H., 2018, J INTELL ROBOT SYST
[7]   Multi-Agent Systems: A Survey [J].
Dorri, Ali ;
Kanhere, Salil S. ;
Jurdak, Raja .
IEEE ACCESS, 2018, 6 :28573-28593
[8]  
Elfes A., 1999, 1999 INT C FIELD SER
[9]  
Freitas E., 2015, EVOLUTIONARY MULTICR
[10]   Autonomous formation flight [J].
Giulietti, Fabrizio ;
Pollini, Lorenzo ;
Innocenti, Mario .
IEEE Control Systems Magazine, 2000, 20 (06) :34-44