A majority gate with chiral magnetic solitons

被引:16
|
作者
Koumpouras, Konstantinos [1 ]
Yudin, Dmitry [2 ]
Adelmann, Christoph [3 ]
Bergman, Anders [4 ,5 ,6 ]
Eriksson, Olle [4 ,7 ]
Pereiro, Manuel [4 ]
机构
[1] Lulea Univ Technol, Dept Engn Sci & Math, Div Mat Sci, Appl Phys, SE-97187 Lulea, Sweden
[2] ITMO Univ, St Petersburg 197101, Russia
[3] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[4] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
[5] Univ Paris Saclay, UVSQ, Univ Paris Sud, CNRS,CEA,Maison Simulat, F-91191 Gif Sur Yvette, France
[6] CEA, INAC MEM, F-38000 Grenoble, France
[7] Orebro Univ, Sch Sci & Technol, SE-70182 Orebro, Sweden
基金
瑞典研究理事会; 俄罗斯科学基金会;
关键词
magnonics; majority gate; solitons; spin dynamics; magnetic nanodevices; WEAK FERROMAGNETISM; QUANTUM-DOT; SPIN; SKYRMIONS; LOGIC; DYNAMICS; PHYSICS; FUTURE; MODEL;
D O I
10.1088/1361-648X/aad82f
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In magnetic materials, nontrivial spin textures may emerge due to the competition among different types of magnetic interactions. Among such spin textures, chiral magnetic solitons represent topologically protected spin configurations with particle-like properties. Based on atomistic spin dynamics simulations, we demonstrate that these chiral magnetic solitons are ideal to use for logical operations, and we demonstrate the functionality of a three- input majority gate, in which the input states can be controlled by applying an external electromagnetic field or spin-polarized currents. One of the main advantages of the proposed device is that the input and output signals are encoded in the chirality of solitons, that may be moved, allowing to perform logical operations using only minute electric currents. As an example we illustrate how the three input majority gate can be used to perform logical relations, such as Boolean AND and OR.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Chiral solitons in monoaxial chiral magnets in tilted magnetic field
    Masaki, Yusuke
    Aoki, Ryuya
    Togawa, Yoshihiko
    Kato, Yusuke
    PHYSICAL REVIEW B, 2018, 98 (10)
  • [2] Majority Gate for Nanomagnetic Logic With Perpendicular Magnetic Anisotropy
    Breitkreutz, Stephan
    Kiermaier, Josef
    Eichwald, Irina
    Ju, Xueming
    Csaba, Gyorgy
    Schmitt-Landsiedel, Doris
    Becherer, Markus
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (11) : 4336 - 4339
  • [3] Magnetic solitons due to interfacial chiral interactions
    Paula, Mellado
    Tapia, Ignacio
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (16)
  • [4] Majority logic gate for 3D magnetic computing
    Eichwald, Irina
    Breitkreutz, Stephan
    Ziemys, Grazvydas
    Csaba, Gyoergy
    Porod, Wolfgang
    Becherer, Markus
    NANOTECHNOLOGY, 2014, 25 (33)
  • [5] Spin solitons in molecular magnetic materials with the chiral structure
    R. B. Morgunov
    V. L. Berdinskiĭ
    M. V. Kirman
    K. Inoue
    J. Kishine
    Y. Yoshida
    Y. Tanimoto
    JETP Letters, 2006, 84 : 446 - 450
  • [6] Spin solitons in molecular magnetic materials with the chiral structure
    Morgunov, R. B.
    Berdinskii, V. L.
    Kirman, M. V.
    Inoue, K.
    Kishine, J.
    Yoshida, Y.
    Tanimoto, Y.
    JETP LETTERS, 2006, 84 (08) : 446 - 450
  • [7] MAJORITY GATE NETWORKS
    AMAREL, S
    COOKE, G
    WINDER, RO
    IEEE TRANSACTIONS ON COMPUTERS, 1964, EC13 (01) : 4 - &
  • [8] MAJORITY GATE NETWORKS
    MEO, AR
    IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1966, EC15 (04): : 606 - &
  • [9] Majority logic gate for magnetic quantum-dot cellular automata
    Imre, A
    Csaba, G
    Ji, L
    Orlov, A
    Bernstein, GH
    Porod, W
    SCIENCE, 2006, 311 (5758) : 205 - 208
  • [10] Geometrical protection of topological magnetic solitons in microprocessed chiral magnets
    Mito, Masaki
    Ohsumi, Hiroyuki
    Tsuruta, Kazuki
    Kotani, Yoshinori
    Nakamura, Tetsuya
    Togawa, Yoshihiko
    Shinozaki, Misako
    Kato, Yusuke
    Kishine, Jun-ichiro
    Ohe, Jun-ichiro
    Kousaka, Yusuke
    Akimitsu, Jun
    Inoue, Katsuya
    PHYSICAL REVIEW B, 2018, 97 (02)