Master-slave synchronization of continuously and intermittently coupled sampled-data chaotic oscillators

被引:27
|
作者
Lee, Sang-Hoon [1 ]
Kapila, Vikram [1 ]
Porfiri, Maurizio [1 ]
Panda, Anshuman [1 ]
机构
[1] NYU, Polytech Inst, Metrotech Ctr 6, Brooklyn, NY 11201 USA
基金
美国国家科学基金会;
关键词
Sampled-data; Chaos; Synchronization; Linear matrix inequality; Microcontroller; GLOBAL SYNCHRONIZATION; OBSERVER DESIGN; COMMUNICATION; SYSTEMS;
D O I
10.1016/j.cnsns.2010.01.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of synchronizing a master-slave chaotic system in the sampled-data setting. We consider both the intermittent coupling and continuous coupling cases. We use an Euler approximation technique to discretize a continuous-time chaotic oscillator containing a continuous nonlinear function. Next, we formulate the problem of global asymptotic synchronization of the sampled-data master-slave chaotic system as equivalent to the states of a corresponding error system asymptotically converging to zero for arbitrary initial conditions. We begin by developing a pulse-based intermittent control strategy for chaos synchronization. Using the discrete-time Lyapunov stability theory and the linear matrix inequality (LMI) framework, we construct a state feedback periodic pulse control law which yields global asymptotic synchronization of the sampled-data master-slave chaotic system for arbitrary initial conditions. We obtain a continuously coupled sampled-data feedback control law as a special case of the pulse-based feedback control. Finally, we provide experimental validation of our results by implementing, on a set of microcontrollers endowed with RF communication capability, a sampled-data master-slave chaotic system based on Chua's circuit. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:4100 / 4113
页数:14
相关论文
共 50 条
  • [41] Invariant manifolds and nonlinear master-slave synchronization in coupled systems
    Chueshov, Igor
    APPLICABLE ANALYSIS, 2007, 86 (03) : 269 - 286
  • [42] Master-slave synchronization and invariant manifolds for coupled stochastic systems
    Chueshov, Igor
    Schmalfuss, Bjoern
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
  • [43] Master-slave synchronization of pulse-coupled bifurcating neurons
    Torikai, H
    Shimazaki, M
    Saito, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2004, E87A (03): : 740 - 747
  • [44] Master-slave synchronization of electrocardiogram chaotic networks dealing with stochastic perturbance
    Babu, N. Ramesh
    Aravind, R. Vijay
    Balasubramaniam, P.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,
  • [45] Master-slave H∞ robust controller design for synchronization of chaotic systems
    Vesely, Vojtech
    Ilka, Adrian
    Korosi, Ladislav
    Ernek, Martin
    MODELING IDENTIFICATION AND CONTROL, 2019, 40 (01) : 41 - 50
  • [46] Nonlinear Filtering Preserves Chaotic Synchronization via Master-Slave System
    Gonzalez-Salas, J. S.
    Campos-Canton, E.
    Ordaz-Salazar, F. C.
    Jimenez-Lopez, E.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [47] Mirroring of synchronization in a bi-layer master-slave configuration of Kuramoto oscillators
    Biswas, Dhrubajyoti
    Gupta, Sayan
    CHAOS, 2022, 32 (09)
  • [48] Sampled-Data Exponential Synchronization of Chaotic Lurie Systems
    Wang, Yueying
    Zhu, Yingxin
    Karimi, Hamid Reza
    Li, Xiaohang
    IEEE ACCESS, 2017, 5 : 17834 - 17840
  • [49] Synchronization of chaotic systems under sampled-data control
    Theesar, S. Jeeva Sathya
    Banerjee, Santo
    Balasubramaniam, P.
    NONLINEAR DYNAMICS, 2012, 70 (03) : 1977 - 1987
  • [50] Synchronization of chaotic systems under sampled-data control
    S. Jeeva Sathya Theesar
    Santo Banerjee
    P. Balasubramaniam
    Nonlinear Dynamics, 2012, 70 : 1977 - 1987