An extension of the discrete variational method to nonuniform grids

被引:21
作者
Yaguchi, Takaharu [1 ]
Matsuo, Takayasu [1 ]
Sugihara, Masaaki [1 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Bunkyo Ku, Tokyo 1138656, Japan
关键词
Discrete variational method; Conservation; Dissipation; Nonuniform mesh; Mapping method; FINITE-DIFFERENCE SCHEMES; CAHN-HILLIARD EQUATION; DERIVATIVES;
D O I
10.1016/j.jcp.2010.02.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The discrete variational method is a method used to derive finite difference schemes that inherit the conservation/dissipation property of the original equations. Although this method has mainly been developed for uniform grids, we extend this method to multidimensional nonuniform meshes. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4382 / 4423
页数:42
相关论文
共 20 条
[1]  
[Anonymous], RIMS KOKYUROKU
[2]   Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals [J].
Berndt, M ;
Lipnikov, K ;
Shashkov, M ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) :1728-1749
[3]  
Bochev PB, 2006, IMA VOL MATH APPL, V142, P89
[4]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[5]   A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient [J].
Choo, SM ;
Chung, SK ;
Lee, YJ .
APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) :207-219
[6]   A HIGHER-ORDER FORMULATION OF THE MIMETIC FINITE DIFFERENCE METHOD [J].
da Veiga, Lourenco Beirao ;
Manzini, Gianmarco .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :732-760
[7]   A stable, convergent, conservative and linear finite difference scheme for the Cahn-Hilliard equation [J].
Furihata, D ;
Matsuo, T .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2003, 20 (01) :65-85
[8]   Finite difference schemes for partial derivativeu/partial derivativet=(partial derivative/partial derivativex)α δG/δu that inherit energy conservation or dissipation property [J].
Furihata, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 156 (01) :181-205
[9]  
Furihata D, 2001, NUMER MATH, V87, P675, DOI 10.1007/s002110000212
[10]   Mimetic finite difference methods for diffusion equations [J].
Hyman, J ;
Morel, J ;
Shashkov, M ;
Steinberg, S .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :333-352